Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология





Скачать 0.94 Mb.
Название Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология
страница 1/4
Павлова Светлана Ивановна
Дата 03.04.2013
Размер 0.94 Mb.
Тип Автореферат
  1   2   3   4
На правах рукописи


Павлова Светлана Ивановна


иммуносупрессивные и противоопухолевыЕ
фармакодинамические эффекты
флавоноидов корней солодки



14.03.06 – фармакология, клиническая фармакология

14.03.09 – клиническая иммунология, аллергология


Автореферат


диссертации на соискание ученой степени

доктора медицинских наук


МОСКВА • 2012


Работа выполнена в Государственном бюджетном образовательном учреждении высшего профессионального образования «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздравсоцразвития РФ и Федеральном государственном бюджетном учреждении «Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздравсоцразвития РФ


^ Научный консультант:

доктор медицинских наук, профессор Иван Генрихович Козлов


Официальные оппоненты:

член-корреспондент РАМН, профессор Николай Львович Шимановский


доктор медицинских наук, профессор Даниил Борисович Утешев


доктор медицинских наук Алексей Викторович Тутельян


^ Ведущая организация:

ГБОУ ВПО «Московский государственный медико-стоматологический университет» Минздравсоцразвития РФ


Защита состоится «19» марта 2012 года в 14:00 часов на заседании диссертационного совета Д 208.072.01 при ГОУ ВПО РГМУ им. Н.И. Пирогова по адресу: 117997 г. Москва, ул. Островитянова, д.1.

С диссертацией можно ознакомиться в библиотеке ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздравсоцразвития РФ по адресу: 117997 г. Москва, ул. Островитянова, д.1.


Автореферат разослан «14» декабря 2011 г.


Ученый секретарь диссертационного совета

доктор медицинских наук, профессор Н.Г. Потешкина


введение

Актуальность проблемы

За последние десятилетия в медицине произошел переход исследований на молекулярный уровень, и появились более детальные сведения о патогенезе многих заболеваний, существенно изменившие представления о фармакотерапевтических подходах к их лечению [Козлов И.Г., 2006]. Важнейшим достижением этого этапа исследований стало выявление молекул, которые играют ведущую роль в возникновении или прогрессировании патологического процесса. Это сформировало концепцию мишень-направленной терапии и обосновало актуальность разработки инновационных «таргетных» препаратов, способных селективно корригировать ключевые звенья патогенеза.

В связи с завершением интенсивных исследований в биотехнологии и иммунологии, а также молекулярной биологии и генетике рака, во второй половине XX века были разработаны и внедрены принципиально новые иммуносупрессанты и противоопухолевые препараты. Примерами таковых лекарственных средств являются моноклональных антитела и низкомолекулярные ингибиторы сигнальных молекул (циклоспорин, макролидные антибиотики, «тинибы») [Кренски А. с соавт., 2006]. Механизмы действия таких лекарственных средств основаны не на неспецифическом уничтожении активно пролиферирующих клеток, а целенаправленной элиминации/угнетении опухолевых или иммунокомпетентных клеток идентичной природы.

Перспективы развития данных областей фармакотерапии тесно связаны с открытием более специфичных мишеней. Так, несомненно, актуальным является изыскание высоко избирательных иммуносупрессантов, не оказывающих влияния на клетки, которые не участвуют в иммунном ответе в момент терапевтического использования препаратов. Мишенью для этой подгруппы может являться запущенный в активированных лимфоцитах конкретный регуляторный или эффекторный механизм [Козлов И.Г., 2006]. Идеальный иммуносупрессант должен обладать избирательным действием на отдельные субпопуляции лимфоцитов, не вызывая повреждения как других клеток организма, так и клонов лимфоцитов, осуществляющих реакции противоинфекционного и противоопухолевого иммунитета. На место подобных иммуносупрессантов на сегодняшний день претендуют так называемые «регуляторы/переключатели» иммунного ответа.

Безусловно, «таргетные» лекарственные средства кардинально изменили стратегию фармакотерапии, продемонстрировав высочайшую эффективность в отношении отдельных заболеваний (например, некоторых онкогематологических). Однако довольно часто эффект такого препарата оказывается ниже ожидаемого, а резистентность к нему развивается так же, как и при стандартной терапии. Таким образом, в большинстве случаев современные средства служат лишь дополнением к стандартным схемам лечения, в которых классические «нетаргетные» противоопухолевые и иммуносупрессивные препараты все еще занимают лидирующее положение.

С точки зрения разработки новых лекарственных препаратов, большой интерес представляет класс полифенольных соединений растительного происхождения, поскольку многие флавоноиды демонстрируют разнообразные биологические эффекты на организменном уровне [Donfack J.H. et al., 2010; Lee J.Y. et al., 2009; Lu J. et al., 2011; Nishizuka T. et al., 2011]. Изучение их механизмов действия на клеточном и молекулярном уровнях показывает, что некоторые флавоноиды способны селективно влиять на активность протеинкиназ [Atluru D. et al., 1991; Akiyama T. et al., 1987; Trevillyan J.M. et al., 1990], а, как следствие, и на активацию сигнальных путей в клетках млекопитающих [Chen C.C. et al., 2004; Funakoshi-Tago M. et al., 2008; Hirao K. et al., 2010]. На наш взгляд, на этом механизме действия может базироваться не только противоопухолевый, но и селективный иммуносупрессивный эффекты флавоноидов. Это требует экспериментального обоснования возможности применения полифенольных соединений в клинической иммунологии и онкологии. В связи с чем представляется актуальным исследования иммунотропной и противоопухолевой эффективности веществ флавоноидной структуры, а также прицельное изучение селективности их влияния на различные звенья (адаптивное и врожденное) иммунной системы.

^ Цель и задачи

Цель: экспериментальное обоснование перспективы создания новых иммуносупрессивных и противоопухолевых лекарственных средств на основе соединений флавоноидной структуры, выделенных из экстракта корней солодки.

В связи с этим были поставлены следующие задачи:

  1. Отработать технологию выделения и стандартизации биологически активной фракции флавоноидов корней солодки (ФКС).

  2. Оценить влияние ФКС на ростовые характеристики (пролиферация, апоптоз) и функциональную активность (продукция цитокинов) клеток адаптивного иммунитета в моделях активации T- и B-лимфоцитов in vitro.

  3. Исследовать фармакологическую эффективность ФКС в экспериментальных моделях иммунопатологических процессов T- и B-клеточной направленности (контактной чувствительности, индуцированной 2,4-динитрофторбензолом (ДНФБ); реакции трансплантат против хозяина; овальбумин-индуцированной бронхиальной астме).

  4. Изучить молекулярные и клеточные механизмы иммунотропных эффектов ФКС, используя модель ДНФБ-индуцированной контактной чувствительности у мышей.

  5. Оценить влияние ФКС на некоторые функциональные показатели клеток-эффекторов врожденного иммунитета in vitro: экспрессию поверхностных маркеров активации, продукцию активных форм кислорода, а также поглотительную и бактерицидную активность фагоцитов.

  6. Провести оценку влияния ФКС на некоторые показатели врожденного иммунитета in vivo в экспериментальных моделях пептон-индуцированной миграции фагоцитов в брюшную полость и острой стафилококковой инфекции у мышей.

  7. Изучить влияние ФКС на ростовые характеристики (пролиферация, апоптоз) клеток различных опухолевых линий и оценить прямую цитотоксичность флавоноидов солодки по отношению к опухолевым клеткам in vitro.

  8. Провести оценку эффективности ФКС в моно- и комбинированной с циклофосфамидом экспериментальной терапии в модели перевиваемого лимфолейкоза P388 у мышей.

  9. Наметить пути выделения фармакологически активных соединений суммарной фракции ФКС.

^ Основные положения, выносимые на защиту

  1. ФКС подавляют пролиферацию активированных T- и B-лимфоцитов in vitro. Возможными механизмами отмены активации лимфоцитов являются как прямое антипролиферативное действие, так и изменение баланса T-хелперных цитокинов, но не индукция апоптоза.

  2. ФКС проявляют иммуносупрессивные эффекты в экспериментальных моделях иммунопатологических процессов T- и B-клеточной направленности у мышей: ДНФБ-индуцированной контактной чувствительности, реакции трансплантат против хозяина и овальбумин-индуцированной бронхиальной астмы.

  3. Механизмами иммуносупрессорного действия ФКС in vivo являются: ингибирование пролиферации лимфоцитов; изменение цитокинового баланса, свидетельствующее о «переключении» дифференцировки субпопуляций T-лимфоцитов-хелперов при индукции иммунного ответа; а также непрямая отрицательная регуляция функций зрелых T-лимфоцитов-эффекторов.

  4. ФКС практически полностью отменяя активацию клеток адаптивного иммунного ответа, незначимо изменяют функциональные показатели клеток-эффекторов врожденного иммунитета: экспрессию активационных маркеров, миграционную, поглотительную и микробицидную функцию фагоцитов.

  5. ФКС подавляют пролиферацию и индуцируют апоптоз в культуре опухолевых клеток различного гистогенеза, а также повышают эффективность циклофосфамида в экспериментальной противоопухолевой терапии.

^ Научная новизна исследования

В работе был отработан и модифицирован метод выделения фармакологически активных полифенольных соединений из экстракта корней солодки. Для повышения репрезентативности исследований многокомпонентного препарата каждую новую серию выделенных флавоноидов в дополнение к общеизвестному фотохимическому методу (цветная реакция с галловой кислотой) предложено стандартизовать в биологической системе (по выраженности угнетения пролиферации опухолевой линии).

Используя стандартизированный препарат флавоноиднов корней солодки, впервые было проведено исследование его фармакодинамических эффектов в моделях, рекомендованных для доклинического изучения новых фармакологических веществ с иммунотропной и противоопухолевой активностью.

Впервые был продемонстрирован антипролиферативный эффект ФКС in vitro в отношении митоген-активированных человеческих и мышиных Т- и B-лимфоцитов. Было доказано, что антипролиферативный эффект ФКС не связан с индукцией апоптоза. Одним из механизмов антипролиферативного эффекта является модулирующее влияние ФКС на продукцию цитокинов: подавление секреции ИЛ-2 и ИФНγ, и повышение уровня ИЛ-6 и ИЛ-17.

Впервые было показано, что ФКС при парентеральном введении проявляют фармакологическую эффективность в экспериментальных моделях иммунопатологических процессов T- и B-клеточной направленности у мышей: подавляют характерные проявления ДНФБ-индуцированной контактной чувствительности, реакции трансплантат против хозяина и овальбумин-индуцированной бронхиальной астмы.

Впервые было продемонстрировано, что внутривенное введение ФКС на ранних сроках после ДНФБ-сенсибилизации приводит как подавлению пролиферативного ответа, так и к снижению абсолютного числа клеток регионарных лимфоузлов. Это коррелирует с изменением цитокинового баланса: наблюдается уменьшение секреции ИЛ-2, ИФНγ и ИЛ-4 и увеличение продукции ИЛ-10 и ИЛ-17 клетками регионарных лимфоузлов, что может свидетельствовать о способности флавоноидов солодки переключать Th1/Th2 иммунные ответы в процессе развития контактной чувствительности на формирование Th17-лимфоцитов.

Впервые показано, что на поздних сроках после ДНФБ-сенси­билизации, обработка флавоноидами солодки суммарной фракции спленоцитов, а также выделенных из нее с помощью иммуномагнитной сепарации T-клеток, приводит к блокаде адоптивного переноса реакции контактной чувствительности несенсибилизированным сингенным мышам-реципиентам. Впервые установлено, что блокирующий эффект ФКС не наблюдается в случае обработки CD8+ лимфоцитов-эффекторов, выделенных из спленоцитов сенсибилизированных животных. Воспроизведение блокирующего эффекта ФКС, происходит только после обработки CD4+-популяции (не проявляют свойств эффекторов контактной чувствительности) и последующего ее адоптивного переноса совместно с CD8+-эффекторами несенсибилизированным мышам-реципиентам.

Впервые показано, что внутривенное введение флавоноидов солодки мышам с овальбумин-индуцированной бронхиальной астмой на стадиях сенсибилизации снижает уровень сывороточных антиген-специфических IgE и IgG1, а также изменяет спектр синтезируемых спленоцитами цитокинов (уменьшение секреции ИЛ-2, и увеличение продукции ИФНγ и ИЛ-17). Это может свидетельствовать о способности ФКС переключать Th2 иммунный ответ в процессе сенсибилизации к овальбумину на формирование антагонистичных популяций Th1/Th17-лимфоцитов.

Кроме того, продемонстрировано, что введение препарата ФКС на стадии провокации бронхиальной астмы интрафарингеальным введением овальбумина мышам, приводит к значимому уменьшению воспалительной инфильтрации бронхов и уменьшению эозинофилов в бронхоальвеолярной лаважной жидкости.

Комплексная оценка влияния ФКС на функции фагоцитов показала, что при использовании их в концентрации (20 мкг/мл), практически отменяющей пролиферацию активированных T- и B-лимфоцитов, не происходит подавления активации, а также миграционной, поглотительной и бактерицидной активности нейтрофилов и моноцитов/макрофагов. Наряду с этим внутрибрюшинное введение ФКС повышает резистентность мышей к острой стафилококковой инфекции. Это позволяет говорить о возможности селективного иммуносупрессивного эффекта ФКС: ингибировании адаптивного звена иммунной системы, без выраженного подавления функций клеток-эффекторов врожденного иммунитета.

С использованием различных опухолевых клеточных культур продемонстрировано, что ФКС подавляют пролиферацию и индуцируют апоптоз в опухолевых клетках различного видового и гистологического происхождения, а также повышают эффективность алкилирующего цитостатика циклофосфамида в экспериментальной противоопухолевой терапии перевиваемого лимфолейкоза P388 у мышей.

На основании сравнительного химического и фармакологического анализа в ходе разделения суммарного препарата ФКС определена наиболее активная фракция флавоноидов солодки.

^ Практическая значимость работы

В процессе работы был отработан и модифицирован метод, позволяющий без значительных трудовых затрат, получать биологически активные полифенольные соединения из экстракта корней солодки, а также подобран комплекс моделей и методов, позволяющих оценивать иммунотропную и противоопухолевую активность и эффективность новых фармакологических агентов.

Совокупность полученных в работе данных углубляет фундаментальные представления о механизмах развития иммунного ответа и патогенезе иммунопатологических процессов, а также дополняют сведения о ме­ханизмах фармакологического действия биологически активных веществ флавоноидной структуры.

Доказанное в ходе выполнения работы отсутствие прямой цитотоксичности, возможность регуляции иммунного ответа, а также различное влияние препарата ФКС на функции иммунокомпетентных клеток, участвующих в механизмах врожденного и адаптивного звеньев иммунитета открывает возможность селективной фармакологической иммуносупрессии.

Выявленные в исследованиях принципиально новые механизмы иммунотропного и противоопухолевого действия ФКС, низкомолекулярная структура флавоноидов (что определяет возможность их химического синтеза и направленной модификации), а также данные, полученные в ходе анализа отдельных фракций, являются достаточным основанием для рассмотрения флавоноидов корней солодки как перспективной основы для разработки новых иммуносупрессивных и противоопухолевых лекарственных средств.

^ Внедрение результатов исследования

Результаты диссертации внедрены в учебный процесс кафедры фармакологии ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздравсоцразвития РФ. Разработанные в диссертации модели и методы используются в экспериментальной работе кафедры и отдела иммунологии ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздравсоцразвития РФ, отдела молекулярной и экспериментальной гематологии, онкологии и иммунологии ФГБУ «Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздравсоцразвития РФ.

^ Публикации и апробация работы

Материалы диссертации были представлены на III Съезде фармакологов России «Фармакология – практическому здравоохранению» (Санкт-Петербург, 2007); VII Всероссийской научно-практической конференции с международным участием «Отечественные противоопухолевые препараты» (Москва, 2008); Объединенном Иммунологическом Форуме (Санкт-Петербург, 2008); Международном конгрессе «Современные проблемы аллергологии, иммунологии и иммунофармакологии (Казань, 2009); 2nd European Congress of Immunology «Immunity for Life, Immunology for Health» (Берлин, Германия, 2009); III World Asthma and COPD Forum and the World Forum of Pediatrics (Дубаи, ОАЭ, 2010); IV World Asthma and COPD Forum, XVI International Congress on Rehabilitation in Medicine and Immunorehabilitation (Париж, Франция, 2011); 30th Congress of the European Academy of Allergy and Clinical Immunology (Стамбул, Турция, 2011); 11th Annual Meeting of the Federation of Clinical Immunology Societies (Вашингтон, США, 2011); III Всероссийском научно-практическом семинаре для молодых ученых «Достижения молекулярной медицины как основа разработки инновационных лекарственных средств» (Волгоград, 2011).

Работа апробирована на совместном заседании кафедры фармакологии педиатрического факультета, кафедры иммунологии МБФ и отдела иммунологии ГБОУ ВПО РНИМУ им. Н.И. Пирогова. По материалам диссертации опубликовано 57 печатных работы, в том числе статей в изданиях рекомендованных ВАК РФ – 22.

^ Объем и структура диссертации

Диссертация изложена на 253 страницах машинописного текста в виде монографии и состоит из введения, главы, посвященной материалам и методам исследований, а также 6 глав, каждая из которых включает обзор литературы, результаты собственных исследований и их обсуждение. В конце диссертации представлены заключение, выводы и библиографический указатель, включающий 314 работ отечественных и зарубежных авторов. Работа иллюстрирована 56 рисунками и содержит 16 таблиц.

^ Материалы и методы исследования

Объекты исследования

Препарат флавоноидов корней солодки: выделение, верификация,
анализ и стандартизация.
Флавоноиды выделяли из сухого коммерческого экстракта корней солодки (ООО «Хармс», С.-Петербург) методом спиртовой экстракции с последующей очисткой с применением адсорбционной колоночной хроматографии на полиамидном сорбенте (Polyamide 6; Fluka, Германия) [Карташова Г.С. с соавт., 1997; Корулькин Д.Ю. с соавт., 2007; Левданский В.А. с соавт., 2006]. Полифенольный состав выделенного препарата ФКС доказывали проведением анализа спектров поглощения в ультрафиолетовом (УФ) и инфракрасном (ИК) диапазонах длин волн.

Фракционирование ФКС проводили методом обращено-фазовой высокоэффективной жидкостной хроматографии (ОФ-ВЭЖХ) с использованием хроматографической системы Agilent 1200 (Agilent Technologies, США) со спектрофотометрическим детектором на диодной матрице, автосамплером и программным обеспечением обработки данных при длине волны 254,4 нм. Система снабжалась колонкой J'sphere ODS-M80 (4,6×250) мм (YMC Co. Ltd, Германия). В качестве подвижной фазы использовали смесь растворителей ацетонитрил-вода (23:77 %об.), скорость потока 1 мл/мин.

Препарат ФКС стандартизировали фотометрическим методом Folin-Ciolalteu, используя в качестве стандарта галловую кислоту (Acros Organics, Германия) [Vermerris W. et al., 2006]. Дополнительно проводилась биологическая стандартизация каждой серии выделенного препарата с использованием опухолевой линии U-937. В экспериментах использовали препарат ФКС, который в концентрации 10 мкг/мл (в пересчете на галловую кислоту) ингибировал пролиферацию опухолевых клеток линии U-937 до уровня 44,0±2,4% от контрольного значения.

Лабораторным животным препарат вводили парэнтерально в изотоническом растворе натрия хлорида с 5% содержанием высокоочищенного этанола, однократная доза ФКС составляла 10 мг/кг. Мыши контрольной группы получали соответствующие объемы растворителя. В опытах in vitro в культуру клеток вносили ФКС в диапазоне концентраций 0,1-20 мкг/мл, так, чтобы финальная концентрация этанола не превышала 1%. В контрольные лунки добавляли соответствующие объемы этанола.

^ Лабораторные животные. Эксперименты проводили на 8-10 недельных (масса 18-22 г.) мышах линий Balb/c, СВА, C57Bl/6, DBA/2, а также гибридах BDF1 (C57Bl/6×DBA/2)F1, полученных из питомника РАМН (Крюково, Московская область).

^ Клетки периферической крови человека. Выделение лейкомассы [Пинегин Б.В. с соавт., 2001] или мононуклеарных клеток (МНК) [Boyum A., 1968] из периферической крови практически здоровых добровольцев осуществляли в стерильных условиях при температуре таящего льда. Клетки ресуспензировали в среде RPMI-1640, содержащей 10% эмбриональной телячьей сыворотки, 100 ЕД/мл пенициллина и 100 мкг/мл стрептомицина (полная среда). Количество клеток подсчитывали в камере Горяева по стандартной методике. Для стимуляции Т- и В-лимфоцитов использовали оптимальные концентрации митогенов: фитогемагглютинина (ФГА), анти-CD3 моноклональных антител (анти-CD3) и поквид-митогена (PWM).

^ Клетки лимфоидных органов мышей. Выделение МНК из селезенки и лимфоузлов мышей производили стандартными методами щадящей гомогенизации лимфоидных органов с удалением эритроцитарной фракции путем осмотического лизиса. Клетки культивировали в полной среде RPMI-1640. Для стимуляции Т- и В-лимфоцитов использовали оптимальные концентрации митогенов: конконавалина А (КонА) и липополисахарида (ЛПС) соответственно. Иммуномагнитную сепарацию субпопуляций лимфоцитов проводили с использованием метода негативной селекции и набора реактивов Dynal Mouse Negative Isolation Kit (Invitrogen Dynal AS, Норвегия).

^ Клетки бронхоальвеолярной лаважной жидкости мышей. Бронхоальвеолярный лаваж у мышей осуществляли, проводя пункцию и канюлирование трахеи. Легкие промывали стерильным раствором фосфатно-солевого буфера (ФСБ). Бронхоальвеолярная лаважная жидкость (БАЛ) использовалась для общего и дифференциального подсчета клеток в цитологических препаратах, фиксацию и окрашивание которых осуществляли по технологии, описанной в наборе красителей Диахим-Дифф-Квик (НПФ «Абрис+», Россия). Долю (%) эозинофилов, нейтрофилов, макрофагов и лимфоцитов подсчитывали, опираясь на стандартные морфологические критерии.

^ Клетки опухолевых культур и штаммов. В работе использованы линии опухолевых клеток различного видового (мыши и человека) и гистологического происхождения (A-431, HT-29, U-373, GL-6, U-937, RAW 264.7, L-929), полученные из коллекции банков глубокозамороженных клеточных культур НИИ вирусологии им. Д.И. Ивановского и ФГБУ ФНКЦ ДГОИ им. Дмитрия Рогачева. Для поддержания экспоненциального роста культуру пассировали каждые 3-4 дня. Опухолевый штамм Р388 поддерживали пассированием in vivo на мышах линии DBA/2 [Трещалина Е.М. с соавт., 2005]. В опытах использованы 2-й – 8-й пассажи после размораживания клеток P388.

^ Бактериальные штаммы. В работе использован штамм Staph­ylococcus aureus (S. aureus) J49 (ATCC 25923), полученный из коллекции музея живых культур ФГБУ ГИСК им Л.А. Тарасевича, а также GFP (Green Fluorescent Protein)-экспрессирующие штаммы Escherichia coli XL-1 Blue (E. coli; трансфицирован на кафедре микробиологии и вирусологии РНИМУ им. Н.И. Пирогова) и S. aureus RN6390 super-GFP (любезно предоставлен профессором William M. Nauseef, Университет Айовы, США). Бактерии растили в питательном бульоне Brain-Heart Infusion (Gibco, США). Для экспериментальных целей использовали культуру, находящуюся в средней log-фазе, которую отмывали от питательной среды раствором Хенкса. Расчет количества микробных тел производили исходя из соотношения: 1 единица оптической плотности – 8,5·108 микобных тел/мл при длине волны 540 нм.

Методы и модели

^ Оценка пролиферации клеток. Для оценки пролиферации клетки засевали в 96-луночный планшет для культур клеток и культивировали в полной среде. В процессе культивирования к опухолевым клеткам или митоген-активированным МНК добаляли 3Н-тимидин и тестируемый агент. К клеткам опухолевых линий, которые характеризовались низкими цифрами включения 3H-тимидина, перед внесением радиоактивной метки добавляли АТФ. Пролиферацию оценивали, измеряя радиоактивность 3Н-тимидина, включенного в реплицирующуюся ДНК. Среднее значение для четырех измерений радиоактивности выражали в процентах от контрольного уровня.

^ Оценка «раннего» и «позднего» апоптоза. При оценке апоптоза использовали аликвоты, содержащие 106 клеток. «Ранний» апоптоз оценивали, окрашивая клетки витально двумя флуоресцентными красителями: пропидий иодидом и ФИТЦ-меченым аннексином, используя Annexin V-FITC Apoptosis Detection Kit (Beckman Coulter, США). Долю аннексин-позитивных и, одновременно, пропидий-негативных клеток считали уровнем апоптоза клеточной популяции. Оценку позднего апоптоза проводили путем окрашивания пропидий иодидом ДНК фиксированных клеток [Darzynkiewicz Z. et al., 1994]. Образцы с клетками анализировали методом однолучевой проточной цитофлуориметрии при длине волны 488 нм (Cytomics FC500; Beckman Coulter, США).

^ МТТ-тест (оценка цитотоксичности ФКС). МТТ-тест проводили по методике, описанной Niks M. с соавт., которая основана на способности митохондриальных дегидрогеназ живой клетки конвертировать 3-(4,5-диметилтиазол-2-ил)-2,5-дифенил-2Н-тетразолиум бромид (МТТ) в формазан. Оценку цитотоксичности ФКС проводили при 90% конфлюэнтности клеточной культуры в стационарной фазе роста. Оптическую плотность формазана, растворенного в диметилсульфоксиде считывали при длине волны 492 нм, долю жизнеспособных клеток выражали в процентах к контролю.

^ Оценка экспрессии поверхностных клеточных маркеров. Определение фенотипа лимфоцитов (CD3+, CD4+, CD8+), а также оценку экспрессии маркеров активации и трансмиграции (молекулы адгезии CD62L и CD11b) фагоцитами проводили методом проточной цитометрии с использованием флуорохром-меченых моноклональных антител к соответствующим молекулам (Invitrogen или Beckman Coulter, США). Процедуру окрашивания проводили согласно рекомендациям, приведенным в инструкции производителя. Уровень экспрессии молекул (в процентах и/или единицах интенсивности флуоресценции) оценивали, учитывая фоновое связывание клеток с флуорохром-мечеными IgG (изотипический контроль).

^ Оценка уровня внеклеточных цитокинов. Выделенные МНК культивировали 24-48 ч в полной среде RPMI-1640 в присутствии КонА. Концентрации цитокинов (ИЛ-1, ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-10, ИЛ-17, ИФН-γ, ФНО-α, GM-CSF) в супернатантах определяли цитофлуориметрическим методом, используя набор реактивов Mouse Th1/Th2 FlowCytomix Multiplex (Bender MedSystems, Австрия) и анализировали методом проточной цитометрии, используя программное обеспечение FlowCytomix Pro (Bender MedSystems, Австрия).

^ Оценка уровня сывороточных иммуноглобулинов. Определение содержания овальбумин (ОВА)-специфических иммуноглобулинов (IgG1, IgG2a и IgE) в сыворотке крови мышей проводили методом твердофазного иммуноферментного анализа. Результат выражали в единицах оптической плотности, измеренной при длине волны 450 нм.
  1   2   3   4

Ваша оценка этого документа будет первой.
Ваша оценка:

Похожие:

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon Исследование на доклиническом уровне иммуносупрессивных эффектов флавоноидов корня солодки 14. 03.

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon Фармакологическая профилактика бронхиальной астмы у детей 14. 00. 25 фармакология, клиническая фармакология

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon «исследование на доклиническом уровне иммунотропных свойств низкомолекулярных пептидов коллагена»

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon Стратегия мультимаркерной оценки действия омега-3 полиненасыщенных жирных кислот при различных патологических

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon Фармакологическая коррекция иммуно- и гепатотоксических эффектов тетрахлорметана 14. 03. 06 фармакология,

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon Антиметастатическая активность препаратов природного происхождения 14. 00. 25 фармакология, клиническая

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon Изучение поведенческих эффектов производных 3,4-диметоксифенилэтиламина 14. 00. 25 фармакология,

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon Оптимизация фармакотерапии плоского лишая. 14. 00. 25. фармакология, клиническая фармакология 14.

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon Оптимизация противотромботической терапии острого инфаркта миокарда 14. 00. 06 кардиология 14. 00.

Иммуносупрессивные и противоопухолевыЕ фармакодинамические эффекты флавоноидов корней солодки 14. 03. 06 фармакология, клиническая фармакология 14. 03. 09 клиническая иммунология, аллергология icon Анализ эффективности лечения сердечно сосудистых осложнений у больных с тиреотоксикозом 14. 03. 06

Разместите кнопку на своём сайте:
Медицина


База данных защищена авторским правом ©MedZnate 2000-2016
allo, dekanat, ansya, kenam
обратиться к администрации | правообладателям | пользователям
Документы