|
Скачать 1.53 Mb.
|
^
Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9×1014 — 3×1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами. Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны: Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм) УФ-B лучи (UVB, 280—315 нм) Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм) Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA и в небольшой доле — UVB. Действие на кожу Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар), приводит к ожогам. Длительное действие ультрафиолета способствует развитию меланомы, различных видов рака кожи, ускоряет старение и появление морщин. Действие на сетчатку глаза Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). ^ , может преобразовываться в тепловую, излучаться уже с другой длиной волны флюоресценции, что в свою очередь может вести к повреждению облученных тканей. Наиболее хорошо изучен тепловой или термический эффект лазерного облучения, который особенно отчетливо проявляется в пигментированных тканях и в зависимости от величины поглощенной энергии приводит либо к мгновенному испарению вещества в месте поражения, либо к развитию ожогов, различной степени, выраженности. При этом вследствие чрезвычайной кратковременности лазерного воздействия, быстрого восстановления нормальной температуры и малой теплопроводности большинства биологических структур возникающие ожоги четко отграничены от окружающих тканей, чем они напоминают электрокоагуляционные ожоги при поражениях электротоком или молнией. Следовательно, термический эффект всегда строго локализован, хотя непосредственный очаг поражения может быть расположен и в глубине, по ходу прохождения луча, при абсолютно неповрежденной коже. Последнее зависит как от степени пигментированности. тканей по ходу луча, так и от возможной фокусировки луча в глубине облучаемого объекта. Например, вследствие фокусирования лазерных лучей хрусталиком глаза очаг поражения локализуется на сетчатке. С тепловым эффектом тесно связан ударный эффект лазерного воздействия, поскольку тепловая энергия, выделяющаяся в месте фокусирования лазерных лучей, вызывает тепловое объемное расширение облучаемых тканей, сопровождающееся давлением на окружающие структуры и их деформацией. Меньшее значение в развитии ударного эффекта принадлежит волне мгновенно испаряющихся частиц ткани. Возникающая в очаге поражения ударная волна распространяется в окружающих тканях сначала с ультразвуковой, затем со звуковой и, наконец, со скоростью менее звуковой. Поэтому эффект ударной волны может отмечаться даже на значительном расстоянии от места непосредственного облучения. Давление ударной волны может достигать значительных величин. Особенно опасны случаи возникновения ударной волны за счет теплового объемного расширения в замкнутых полостях (в полости черепа, глаза, грудной клетки и т. п.), тем более если в этих случаях действие ударной волны сочетается с парообразованием. Распространяясь в тканях с ультразвуковой скоростью, ударная волна может вызывать явление кавитации, т. е. образования полостей, за счет быстрого испарения частиц вещества. Образующиеся полости, спадаясь после прохождения ударной волны, в свою очередь вызывают дополнительный компрессионный удар. Помимо теплового и ударного эффекта, вследствие своей большой энергетической плотности, лазерный луч индуцирует возникновение или изменение напряжения существующих в биообъектах: электрических и магнитных полей. При действии достаточно мощных лазерных излучений напряженность возникающего электрического поля может достигать максимальную величину, что достаточно для ослабления и даже разрыва химических связей, образования свободных радикалов, катализа различных химических реакций. Таким образом, под влиянием лазерного излучения будут происходить разнообразные фотоэлектрические и фотохимические эффекты.
Ионизи́рующее излуче́ние — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим. В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна). Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют альфа-, бета- и гамма-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное рентгеновское излучение). Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки. Из-за того, что разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества. После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело. В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации). Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки Хиросимы и Нагасаки. Японские специалисты в течение всех лет после атомной бомбардировки двух городов наблюдали тех 87 500 человек, которые пережили ее. Средняя доза их облучения составила 240 миллизиверт. При этом прирост онкологических заболеваний за последующие годы составил 9%. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил. |