|
Скачать 1.07 Mb.
|
На правах рукописи ГУЛЯЕВА ИННА ЛЕОНИДОВНА НОВЫЕ ПОДХОДЫ К ФАРМАКОКОРРЕКЦИИ НЕСПЕЦИФИЧЕСКИХ СОСТАВЛЯЮЩИХ ПАТОГЕНЕЗА ТОКСИЧЕСКИХ ПОРАЖЕНИЙ 14.00.25 - фармакология, клиническая фармакология 14.00.16 - патологическая физиология Автореферат диссертации на соискание ученой степени доктора медицинских наук Томск – 2009 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Пермская государственная медицинская академия им. ак. Е.А. Вагнера Федерального агентства по здравоохранению и социальному развитию». ^ академик РАН и РАМН, доктор медицинских наук, профессор Черешнев Валерий Александрович доктор биологических наук, профессор Сергеева Светлана Александровна ^ : доктор медицинских наук, профессор Хазанов Вениамин Абрамович доктор медицинских наук, профессор Ваизова Ольга Евгеньевна доктор медицинских наук, профессор Гольдберг Виктор Евгеньевич ^ ГОУ ВПО «Российский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию» Защита диссертации состоится «____»_______________ 2009 года в «____» часов на заседании диссертационного совета Д 001.031.01 при Учреждении Российской академии медицинских наук НИИ фармакологии СО РАМН (634028, г. Томск, пр. Ленина 3) С диссертацией можно ознакомиться в библиотеке Учреждения Российской академии медицинских наук НИИ фармакологии СО РАМН Автореферат разослан «____»_______________2009 года. Ученый секретарь диссертационного совета, доктор биологических наук Амосова Е.Н. Актуальность проблемы. Деятельность современного человека осуществляется в условиях возрастания интенсивности и продолжительности действия неблагоприятных эколого-профессиональных факторов – колебаний барометрического давления, температурных нагрузок, изменений парциального давления газов вдыхаемого воздуха, интенсивных шумов и вибраций, гипергравитации, или невесомости, угловых ускорений, негативных информационно-семантических и других факторов среды. Сочетанное, одновременное или последовательное действие нескольких факторов ведет к взаимному отягощению их влияния на организм человека. Выполнение в этих условиях задач профессиональной деятельности, особенно связанных с физическими и психоэмоциональными нагрузками, обусловливает дополнительное напряжение функций организма и может вызвать быстрое истощение его физиологических резервов. В ответ на воздействие определенной дозы (интенсивности и длительности) неблагоприятных эколого-профессиональных факторов могут развиваться состояния предельного напряжения механизмов адаптации с обратимыми явлениями дезадаптации, которые обозначаются термином экстремальные. Особенно высок риск развития экстремальных и критических состояний у ликвидаторов последствий аварий и катастроф, участников военных конфликтов, подводников, водолазов, десантников, летного состава, космонавтов (Новиков В.С. и соавт., 1998; Козлов Н.Б., 1992; Шестопалов С.С., 2000; Морозов И.С. и соавт., 2001, Ганапольский В.П., 2008; Домрачеев А.А., 2009; Гурвич В.Б., 2009). Бурное развитие ядерной энергетики и химической промышленности во многих странах мира в последние годы сделало угрозу радиоактивного и химического заражения обширных территорий реальной не только в случае применения ядерного и химического оружия, но и в случае разрушения объектов ядерно-топливного цикла и химической промышленности, находящихся в районе ведения боевых действий, обычным оружием или при их аварии в ходе промышленной эксплуатации. Это приведет к появлению новых категорий пораженных. В массовых масштабах возникнут специфические виды патологии, требующие специальных подходов при проведении профилактики и лечения. Существенно изменятся величина и структура санитарных потерь. Значительно увеличится число лиц с боевой терапевтической травмой, среди которых большую часть составят пораженные токсичными химикатами и ионизирующим излучением. В 1993 году была принята Парижская «Конвенция о запрещении разработки, производства, накопления и применения химического оружия». Конвенцию подписали более 150 государств, в их числе и Россия. В соответствии с Конвенцией изданы Указ Президента Российской Федерации «О подготовке Российской Федерации к выполнению международных обязательств в области химического разоружения» и Постановление Правительства РФ от 21 марта 1996 года №305 «Об утверждении Федеральной целевой программы «Уничтожение запасов химического оружия в Российской Федерации»», а также Постановление Правительства РФ от 24 октября 2005 года №639 «О внесении изменений в Федеральную целевую программу «Уничтожение запасов химического оружия в Российской Федерации»». Однако основными причинами, побуждающими говорить о сохранении высокого уровня военно-химической опасности, являются достижения современной химии в области органического синтеза, беспрецедентный рост масштабов химического производства в мирных целях, огромное разнообразие синтезированных и вновь синтезируемых веществ, многие из которых обладают высокой токсичностью. Количество изученных физиологически активных веществ (ФАВ), свойства которых позволяют рассматривать их как потенциальные средства ведения химической войны, составляют не один десяток. И этот список будет расти даже в том случае, если в соответствии с Конвенцией будут полностью запрещены работы по поиску новых активных токсикантов. Поэтому химическое разоружение ни в одной стране пока не привело к сокращению работ в области противохимической защиты (ПХЗ). В последнее время к угрозе применения химических веществ в военных конфликтах добавляются проблемы химической опасности в мирное время. Непрерывно растет вероятность аварий на химически опасных объектах, увеличивается возможность терроризма с применением боевых токсических химических веществ (БТХВ), возникает, а в отдельных регионах порой принимает катастрофические масштабы, загрязнение окружающей среды (Плужников Н.Н. и соавт., 2000,2001; Лужников Е.А., Гольдфарб Ю.С., 2001; Прозоровский В.Б. и соавт., 2001; Куценко С.А., Гребенюк А.Н., 2001; Соцкова В.А., 2007; Гурвич В.Б., 2009). Всё это доказывает актуальность изучения механизмов действия токсикантов и разработки новых методов эффективного лечения токсических поражений. Однако существующие подходы к решению обозначенной проблемы сконцентрированы в основном на специфических составляющих патогенеза токсических поражений и их терапии. Действительно, если для купирования специфических эффектов токсикантов основным подходом является использование антидотов, то для коррекции неспецифических проявлений токсических поражений экстремальная медицина по-прежнему опирается лишь на синдромальный (посимптомный) подход. Отсутствуют четкие критерии использования широкого арсенала средств, позволяющих повышать неспецифическую резистентность организма в критических состояниях. Немаловажным является и то, что недостаточно изучены вопросы взаимодействия специфических антидотов с лекарственными средствами, используемыми при коррекции неспецифических проявлений токсических поражений. Не менее актуальной видится разработка средств и методов коррекции экстремальных состояний как для медицины труда (военной, авиакосмической, морской и спортивной медицины, гигиены труда и профпатологии, медицины катастроф), так и для клинической медицины (Азизов А.П., 1998; Косолапов В.А., Куренков Л.А., 1998; Шестопалов С.С., 2000; Крылова Е.В., 2003; Юшков Б.Г., 2006; Caputa M., 2006;). Перспективной в качестве средств коррекции экстремальных состояний человека является группа фармакологических препаратов, которые стимулируют двигательную активность и работоспособность организма в осложненных (экстремальных) условиях (Бобков Ю.Г. и соавт., 1984; Сергеева С.А., 1993; Морозов И.С. и соавт., 1998; Катаев В.А., 2006; Воронина Т.А. и соавт., 2007). Среди них важное место занимают актопротекторы производные бензимидазола. Действительно, опыт авиационной, радиационной, спортивной медицины показывает, что для обеспечения эффективной фармакотерапии экстремальных состояний перспективным является создание системы фармакологических комплексов, которые должны обладать психостимулирующим действием на фоне достаточного антиоксидантного, витаминного и минерального обеспечения. Для данной категории людей базовыми должны являться препараты из группы актопротекторов (Новиков В.С. и соавт., 1998). ^ Целью исследования явилась разработка патогенетически обоснованных подходов к коррекции неспецифических проявлений токсических поражений с учетом взаимодействия средств неспецифической фармакотерапии со специфическими антидотами. ^
^ Впервые изучено влияние бемитила и его сочетанного применения с антидотами метиленовым синим и цистамином на длительность жизни экспериментальных животных и процессы ПОЛ при остром смертельном отравлении нитритом натрия и хронической нитритной интоксикации. Показано, что механизмы потенцирования защитного эффекта сочетанного применения метиленового синего или цистамина, обладающих деметгемоглобинезирующей активностью, с бемитилом, в фармакологическом спектре которого присутствует антигипоксическая и антиоксидантная активность, обусловлены их действием на различные звенья токсикогенеза. Продемонстрировано, что одним из механизмов реализации защитных эффектов сочетанного применения бемитила с антидотами является восстановление нарушенного прооксидантно-антиоксидантного равновесия. Выявлено, что использование бемитила в качестве дополнительного к антидотам средства восстановительного лечения после тяжелых отравлений ФОС полностью предупреждает падение активности Na+/K+ АТФазы и увеличение продуктов ПОЛ-диеновых конъюгатов, оснований Шиффа (ШО) в органах крыс. Бемитил в комбинации с атропином, в отличие от атропина, применяемого отдельно, предупреждает развитие структурно-функциональных нарушений в мембранах эритроцитов, и как следствие, изменение флуоресценции мембранного зонда 1-анилинонафталин-8-сульфоната (АНС) в мембранах эритроцитов крыс на 14 и 21 сутки после отравления карбофосом. Показано, что в основе механизма защитного влияния на эритроциты лежат три основных механизма: стимулирующее действие препарата на эндогенные антиоксидантные системы, антирадикальный эффект, мембраностабилизирующее действие. Выявлено преимущество бемитила перед гепатопротектором силимарином в условиях экспериментального цирроза печени, вызванного смесью полихлорированных бифенилов и этанола. Применение бемитила способствует восстановлению активности сукцинатдегидрогеназы (СДГ), малатдегидрогеназы (МДГ), ферментов синтеза мочевины (аргиназы и карбамоилфосфатсинтетазы (КФС)), стабилизации процессов ПОЛ, активности каталазы, а также нормализует скорость использования Гл-6-Ф через пентозофосфатный шунт. Определены особенности влияния бемитила на изоформо-специфические (7-этоксирезоруфин-О-деэтилазную (ЭРОД), бензилоксирезоруфин-О-дебензилазную (БРОД)) и изоформо-неспецифические (аминопирин-О-деметилазную, анилин-р-гидроксилазную, 4-нитроанизол-О-деметилазную и 2,5-дифенилизоксазол-р-гидроксилазную) активности в печени и лимфоцитах, что позволило оценить возможное участие конкретных изоформ цитохрома Р450 в метаболизме препарата и прогнозировать характер фармакокинетической интерференции в рамках комплексной терапии. Впервые исследовано влияние феномена фармакокинетической интерференции на фармакокинетические параметры бемитила и других лекарственных препаратов при совместном их применении в единой лекарственной форме. Показано, что механизмами реализации защитно-восстановительного действия бемитила, повышающего функциональное состояние организма и работоспособность при воздействии экстремальных факторов среды обитания и деятельности, являются антирадикальная активность, влияние препарата на ферменты антиоксидантной защиты (супероксиддисмутаза (СОД), каталаза), а также на ряд других ферментных систем, биоэнергетику клетки и состояние биологических мембран. Благодаря оптимальным фармакокинетическим свойствам препарата, а именно интенсивному распределению бемитила в органы и ткани, бемитил способен взаимодействовать с водорастворимыми и липофильными свободными радикалами. ^ Сформулирован подход к анализу механизмов реализации защитно-восстановительных эффектов препаратов, повышающих функциональное состояние организма и работоспособность человека при воздействии экстремальных факторов среды обитания и деятельности, с целью создания методологии доклинического изучения препаратов подобного типа действия. Обоснована перспективность включения бемитила в качестве базисного средства, обеспечивающего позитивное влияние на выживаемость и физическую работоспособность при широком спектре неблагоприятных для профессиональной деятельности условий, в систему фармакологических комплексов, содержащих дополнительные препараты, избирательно повышающие работоспособность в конкретной экстремальной ситуации. Полученные результаты доказывают необходимость учета феномена фармакокинетической интерференции при применении многокомпонентных лекарственных комплексов, содержащих в своем составе актопротекторы – производные бензимидазола, в условиях фармакологической коррекции экстремальных состояний, и позволяют прогнозировать потенциально опасные комбинации лекарственных средств, а также оптимизировать режимы использования актопротекторов в зависимости от их влияния на цитохром Р450-зависимые монооксигеназы и особенностей распределения по органам и тканям организма. ^ 1. Присутствие неспецифических механизмов патогенеза постинтоксикационных нарушений в тканях органов-мишеней, обусловленных активацией перекисного окисления и нарушением антиоксидантной защиты, ведущих к повреждению клеточных мембран и метаболическому дисбалансу, определяет необходимость совместного применения антидотов специфического действия совместно со средствами неспецифической защиты, в частности - актопротекторов производных бензимидазола. 2. Курсовое применение производного бензимидазола – актопротектора бемитила обеспечивает кумуляцию препарата в крови преимущественно за счет его накопления в эритроцитах, при этом имеет место интенсивное распределение препарата из крови в органы и ткани-мишени с оптимальным коэффициентом распределения между полярной и неполярной фазами, что позволяет эффективно взаимодействовать с радикалами без образования активных радикальных форм ингибитора. 3. При проведении терапии токсических повреждений с использованием фармакологических комплексов необходим обязательный учет феномена фармакокинетической интерференции. ^ Материалы диссертации доложены на Международной конференции «Новые лекарственные средства: синтез, технология, фармакология, клиника» (Минск, 2001), конференции «Клинические исследования лекарственных средств в России» (Москва, 2001, 2007), IX, X, XI, XIV Российских национальных конгрессов «Человек и лекарство» (2002, 2003, 2004, 2007), I национальной научно-медицинской конференции «Здоровье человека» (Ереван, Армения, 2002), VI, VIII и IX Международной научной конференции «Здоровье семьи – XXI век». (Дубаи, ОАЭ, 2002; Гоа, Индия, 2004; Далянь, Китай, 2005; Бангкок, Таиланд, 2006), на научных сессиях Пермской государственной медицинской академии (Пермь, 2002, 2006), Международной конференции «Reactive oxygen and nitrogen species, antioxidants and human health» (Смоленск, 2003), II съезде Российского научного общества фармакологов «Фундаментальные проблемы фармакологии» (Москва, 2003), конференции «Основные общепатологические и клинические закономерности развития критических терминальных и постреанимационных состояний, принципы их коррекции» (Москва, 2003), IV Российской конференции «Гипоксия: механизмы, адаптация, коррекция» (Москва, 2005). Публикации. По теме диссертации опубликовано 69 печатных работ. ^ Диссертация изложена на 283 страницах машинописного текста и состоит из введения, обзора литературы, главы описания материалов и методов исследования, 9 глав собственных исследований, заключения, выводов и списка литературы, включающего 621 источник, из них 339 отечественный и 282 зарубежный. Работа иллюстрирована 8 рисунками и содержит 34 таблицы. ^ Экспериментальные исследования проведены на 154 белых беспородных мышах-самцах и самках массой 17-24 г и 956 белых беспородных крысах-самцах массой 140-260 г, содержащихся на стандартной диете вивария в условиях свободного доступа к воде. Использованы также лимфоциты периферической крови 42-х здоровых доноров-добровольцев. В качестве объекта исследования использовали химически чистые субстанции бемитила (2-этилтиобензимидазола гидробромид) и бромантана (N-(2-адамантил)-N-(пара-бромфенил)амин, соединения Б-16 [2-(3,4-дигидроксифенацил-тио] бензимидазол, а также комбинированные лекарственные формы препаратов: пирабел (комбинированная капсулированная лекарственная форма бемитила 0,25 и пирацетама 0,6); бромитил (комбинированная лекарственная форма таблеток бромантана 0,1 и бемитила 0,125). Препаратами сравнения в различных сериях экспериментов служили: антиоксидант – ионол; актопротекторы – этомерзол, тиетазол. В работе также применяли антидоты ФОС – М-холиноблокатор – атропин, реактиватор холинэстеразы – диэтиксим; радиопротектор – цистамин; антидот метгемоглобинобразующих ядов – метиленовый синий. Механизмы и эффективность фармакологической коррекции процессов свободно-радикального перекисного окисления липидов, мембранотоксического действия и метаболических нарушений оценивали по следующим показателям:
Механизмы защитной эффективности бемитила и его совместного применения с антидотами (метиленовый синий, цистамин) оценивали при остром смертельном отравлении нитритом натрия (введение под кожу спины крыс 4% раствора нитрита натрия в дозе 400 мг/кг) и в условиях метгемоглобинемии, вызванной хронической нитритной интоксикацией (подкожное введение крысам нитрита натрия в дозе 50 мг/кг в сутки в течение 4-х недель). Исследование влияния бемитила и его сочетанного применения с антидотами ФОС (атропин, диэтиксим) на состояние мембран, процессы ПОЛ и некоторые метаболические реакции оценивали на модели острой интоксикации ФОС, вызванной путем однократного внутрижелудочного введения крысам карбофоса в дозах 0,8 - 0,9 LD50 или однократного внутримышечного введения армина в дозе 0,75 мг/кг (0,9 LD50). Эффективность бемитила при токсическом поражении печени оценивали при экспериментальном циррозе печени, который создавали путем внутрижелудочного введения 50% раствора смеси полихлорированных бифенилов и трихлорбензола, соответствующей рецептуре «Совтол-10», на оливковом масле из расчета 0,25 мл на 100 г массы тела 2 раза в неделю в течение 4-х недель. Вместо воды для питья использовали 10% раствор этанола. Содержание бемитила, бромантана и бромитила в крови, органах и тканях экспериментальных животных определяли газохроматографическим методом. Анализ проводили на газовом хроматографе (модель 3700 с электроннозахватным детектором, содержащим 63Ni-β-ионизационный источник) с использованием стеклянной колонки длиной 2 м (внутренний диаметр 2,5 мм). В качестве сорбента использовался Chromaton N-Super c 3% жидкой фазы SE-30. Скорость потока газа-носителя (азот особой чистоты): через колонку – 25 мл/мин; через детектор – 60 мл/мин. Содержание пирацетама, бемитила и пирабела в крови определяли методом высокоэффективной жидкостной хроматографии. Анализ проводили на хроматографе «Perkin Elmer» (США) модель 601 с УФ-детектором при длине волны 280 нм с использованием метода обращенно-фазной хроматографии на колонке длиной 250 мм и внутренним диаметром 2,5 мм, заполненной селикагелем с привитой фазой октадецилсукцината с длиной цепи С18. В качестве подвижной фазы использовали элюент следующего состава: ацетонитрил – 35%, 0,1М трис-буфер с рН=7,5 – 25%, вода – 40%. Скорость подачи элюэнта на колонку 1 мл/мин. Микросомы печени получали методом дифференциального центрифугирования (Ahokas J. et al., 1977). 12000g-гомогенаты (субмитохондиальная фракция) получали методом O. Pelkonen (Pelkonen O. et al., 1974). Концентрацию белка определяли по методу Лоури или Брэдфорда (наборы Bio-Rad Protein Assay Kit; Bio-Rad Laboratories, США). Содержание цитохромов Р450 и b5 в суспензии микросом определяли методом T. Omura и R. Sato (1964) на спектрофотометре «Specord M40». Активность аминопирин-N-деметилазы и анилин-р-гидроксилазы определяли в 12000g-гомогенатах по методу O. Pelkonen (Pelkonen O. et al., 1974). Идентификацию продуктов реакции осуществляли спектрофотометрически стандартным способом, используя реактив Nash в случае аминопирин-N-деметилазной активности и цветную реакцию образования индол-фенольного комплекса в случае анилин-р-гидроксилазной активности. Скорость О-деметилирования 4-нитроанизола оценивали по количеству образовавшегося р-нитрофенола (микрометод B. Schoene (Schoene B. et al. 1972)). Концентрацию р-нитрофенола определяли на планшетном спектрофотометре Multiscan-Plus (Labsystems, , Финляндия) при λ=450 нм. 2,5-дифенилоксазол-р-гидроксилазную активность определяли по методу J. Ahokas et al. (1987). Концентрацию водорастворимого метаболита 5-(р-гидроксифенил)-2-фенилоксазола определяли на флуориметре Versa FLUOR (Bio-Rad Laboratories, США). Определение ЭРОД и БРОД активностей в 12000g-гомогенатах печени осуществляли по методу С. Thompson et al. (1989), в лимфоцитах – в модификации С. Сибиряка (Sibiryak S. et al. 2001). Для постановки реакции бласттрансформации лимфоциты выделяли из венозной крови методом градиентного центрифугирования (45 мин., 400g), на градиенте Ficoll-Paque Plus (Pharmacia Biotech, США). Выделенные мононуклеары ресуспендировали в среде RPMI-1640, содержащей 50 мкг/мл гентамицина, 10% эмбриональной телячей сыворотки и культивировали 72 часа (37ºС, 5% СО2). Концентрация клеток в культуре составляла 1∙106 клеток/мл. Для индукции пролиферации использовали митогены – смесь фитогемагглютинина Р (10 мкг/мл) и митогена лаконоса (5 мкг/мл). Эффективность применения бемитила в комплексе реабилитационных мероприятий контингента, пострадавшего от аварии на Чернобыльской АЭС, оценивали у 81 пациента в возрасте от 40 до 70 лет из числа ликвидаторов последствий Чернобыльской аварии, страдающих хроническими заболеваниями гепатобилиарной системы с нарушениями функции печени. Все пациенты, получающие стандартную гепатопротекторную терапию, были случайным образом разделены на две группы. Пациентам исследуемой группы (54 человека) дополнительно назначали бемитил в дозе 750 мг/сут (250 мг в таблетках 3 раза в день) в течение двух недель. Контрольную группу составили 27 пациентов со сходными поло-возрастными характеристиками. Исходно и после проведенного курса лечения оценивали клинические симптомы и лабораторные признаки печеночной дисфункции. Статистический анализ результатов Анализ результатов проводили с использованием пакета статистических программ реализованных в Windows 2000/XP: Statistica 6.0 (StatSoft), Pharmacologic Calculation System 4.1. Использовали параметрические и непараметрические методы анализа. Различия между группами считали достоверными при уровне значимости p<0,05. ^ Антиокислительную активность бемитила и других производных бензимидазола исследовали на двух модельных системах свободнорадикального окисления различной сложности. Активность соединений в системе «этилбензол-ледяная уксусная кислота» оценивали по величине константы К7 (характеризует антирадикальную активность препаратов), которую сопоставляли с константой К7 ионола – известного синтетического ингибитора свободнорадикальных реакций. Показано, что бемитил, этомерзол и соединение Б-16 проявляют выраженную антирадикальную активность (табл. 1). Наиболее активными препаратами в данной модельной системе являются этомерзол и соединение Б-16, которые по способности ингибировать инициированное окисление этилбензола не уступали ионолу (ионольный эквивалент - 0,64 и 0,65, соответственно). Тиетазол и диэтиксим не проявляли антиокислительной активности в данной модельной системе. Активность препаратов также оценивали в модельной системе с использованием гомогената печени крыс, оценивая влияние препаратов (через 1, 2, 3 и 4 часа после инкубации) на процессы свободно-радикального перекисного окисления липидов при спонтанном, неферментном (Fe2+ аскорбатзависимом) и ферментном ПОЛ. Таблица 1 Антирадикальная активность препаратов, оцененная на модельной системе инициированного окисления этилбензола
В условиях аскорбатзависимого и ферментного ПОЛ антиоксидантная активность бемитила не уступала этомерзолу и соединению Б-16. В условиях автоокисления (система спонтанного ПОЛ) этомерзол был несколько активнее бемитила (препараты ингибировали ПОЛ на 73% и 62%, соответственно). Препараты незначительно уступали ионолу по способности ингибировать свободно-радикальное ПОЛ (51% - 73%, против 75% - 100% под действием ионола). Тиетазол практически не влиял на процессы ПОЛ. Таблица 2 Антиокислительная активность препаратов, оцененная на модельной системе перекисного окисления липидов печени крыс
Таким образом, в различных модельных системах показана высокая антирадикальная и антиокислительная активность бемитила и других производных бензимидазола – этомерзола и соединения Б-16. В условиях острого смертельного отравления экспериментальных животных нитритом натрия, введение мышам бемитила в дозе 25 мг/кг (табл. 3) достоверно не увеличивает длительность жизни отравленных животных, в отличие от метиленового синего (10 мг/кг; +31,6%). Сочетанное применение бемитила (25 мг/кг) и метиленового синего (10 мг/кг) увеличивало продолжительность жизни мышей на 55% (р < 0,01). Повышение дозы бемитила до 50 мг/кг достоверно, сравнимо с метиленовым синим, увеличивало продолжительность жизни отравленных животных. Сочетанное введение бемитила (50 мг/кг) и метиленового синего (10 мг/кг) приводило к выраженному потенцированному эффекту и увеличивало длительность жизни мышей в 2,1 раза (p < 0,001). Таблица 3 Влияние бемитила и его комбинации с метиленовым синим или цистамином на продолжительность жизни мышей при острой нитритной интоксикации.
Примечание: *, **, *** – статистически достоверное различие (p < 0,02, p < 0,01, p < 0,001, соответственно) с группой «нитрит натрия» Бемитил (50 мг/кг) сравнимо с антидотом цистамином (50 мг/кг) увеличивал длительность жизни отравленных животных на 49% и 41% соответственно. Сочетанное введение бемитила и цистамина увеличивало длительность жизни мышей в 2,2 раза (p < 0,001). Показано, что в условиях острой гемической гипоксии, вызванной введением смертельной дозы нитрита натрия, бемитил потенцирует защитный эффект деметгемоглобинообразователей – метиленового синего и цистамина. В условиях метгемоглобинемии, вызванной длительной нитритной интоксикацией в качестве антидота использовали цистамин, который имеет большую по сравнению с метиленовым синим широту терапевтического эффекта. Другим преимуществом цистамина является возможность его использования в таблетированной форме для перорального применения. В условиях длительной нитритной интоксикации на 15 и 30 сутки эксперимента содержание метгемоглобина у крыс составляет соответственно 45,02,15% и 42,62,60% от общего гемоглобина. Введение крысам бемитила не оказывало существенного влияния на динамику образования и разрушения метгемоглобина, поскольку его уровень в крови отравленных крыс существенно не изменялся в указанные сроки тестирования. В то же время применение цистамина, обладающего деметгемоглобинизирующим действием, статистически достоверно снижает содержание метгемоглобина на 15-е и 30-е сутки опыта соответственно до 67,0% и 79,3% от аналогичного показателя в контроле (табл. 4). ^
Примечание: * – статистически достоверное различие (p < 0,05) с группой «нитрит натрия» Хроническое отравление нитритом натрия сопровождается накоплением диеновых конъюгатов (ДК) в эритроцитах, ДК и оснований Шиффа в полушариях головного мозга и печени крыс, а также снижением активности ферментов антиоксидантной защиты, что свидетельствует о сдвигах в системе регуляции свободно-радикального окисления липидов (табл. 5 и 6). Сочетанное введение бемитила и цистамина полностью предупреждает сдвиги прооксидантно-антиоксидантного равновесия в эритроцитах, раздельное введение крысам бемитила или цистамина менее эффективно. Комбинация бемитила и цистамина в условиях метгемоглобинемии имеет преимущество по сравнению с индивидуальными препаратами в значительной степени нормализует процессы ПОЛ, оказывает защитно-восстановительное действие на ферментативную активность в головном мозге и печени крыс. Полученные результаты свидетельствуют о том, что интенсивность ПОЛ в эритроцитах выше, чем в мозге и печени, в условиях длительной нитритной интоксикации. Это связано, вероятно, с тем, что эритроциты подвергаются прямой атаке свободнорадикальных метаболитов, возникающих при окислении гемоглобина нитрит-ионом, в то время как в мозге и печени усиление липопероксидации присходит, скорее всего, за счет другого патогенетического механизма, а именно: развивающейся гипоксии и токсического стресса, нарушающих клеточный метаболизм. Таблица 5 Влияние бемитила, цистамина и их комбинации на прооксидантно-антиоксидантное равновесие в эритроцитах крыс в условиях длительной нитритной интоксикации
Примечания: * – статистически достоверное различие (р < 0,05) с группой «интактные крысы»; ** – с группой «нитрит натрия» Окислительный стресс и лидирующее его проявление – активация ПОЛ – важное и малоисследованное звено в патогенезе тяжелых отравлений ФОС. ФОС обладают выраженным мембранотоксическим действием. Продукты ПОЛ оказывают дестабилизирующее действие на структурно-функциональное состояние биологических мембран, что выражается в нарушении их основных физико-химических свойств – проницаемости, вязкости, фазового состояния; изменяют молекулярную структуру мембраны клеток: нарушаются липид-липидные, а также липид-белковые взаимодействия, изменяется активность мембраносвязанных ферментов, в частности Na+/K+ АТФазы. Таблица 6 Влияние бемитила, цистамина и их комбинации на прооксидантно-антиоксидантное равновесие в условиях хронической нитритной интоксикации
Примечания: * – статистически достоверное различие (р < 0,05) с группой «интактные крысы»; ** – с группой «нитрит натрия» Введение крысам карбофоса в дозе 0,9 LD50 снизило на 42,6% активность Na+/K+ АТФазы на 14-е сутки эксперимента у выживших животных. Армин в дозе 0,9 LD50 снижает активность фермента на 38,4% (табл. 7). ^ фосфорорганическими соединениями (в мкМ Фн на 1 мг белка/час; n = 12)
Примечания: * – статистически достоверное различие (p < 0,05) с группой «интактные крысы»; ** – с группой «фосфорорганические соединения» Лечение отравленных карбофосом крыс двумя антидотами ФОС (М-холиноблокатор атропин в дозе 10 мг/кг и реактиватор холинэстеразы диэтиксим в дозе 25 мг/кг) дважды внутримышечно – через 30 минут и 2 часа после введения карбофоса – несколько повысило активность Na+/K+ АТФазы до 3,60,5 мкМ Фн на 1 мг белка в час, но не восстановило активность фермента. В то же время включение в схему лечения бемитила (50 мг/кг 2 раза – на 2-е и 3-и сутки) полностью восстановило активность Na+/K+ АТФазы (табл. 7). Введение комплекса антидотов крысам, отравленным армином, через 0,5 мин, 30 мин и 3 часа после интоксикации приводит к недостоверному увеличению активности фермента. Более эффективна комбинация антидотов с бемитилом, который применяли дополнительно на 2-е и 3-и сутки после отравления внутрибрюшинно в дозе 50 мг/кг. Активность Na+/K+ АТФазы в данной группе крыс была полностью восстановлена до аналогичных показателей здоровых животных (табл. 7). Результаты проведенных исследований позволяют сделать вывод, что острая интоксикация крыс карбофосом (0,9 LD^
Примечания: * – статистически достоверное различие (p<0,05) с группой «интактные крысы»; ** – с группой «фосфорорганические соединения». Карбофос приводит к снижению активности СОД и каталазы в эритроцитах отравленных животных на 14-е сутки постинтоксикационного периода на 36,4% (p < 0,05) на 23% (p < 0,05) от контроля соответственно. Введение отравленным крысам атропина (10 мг/кг) предупреждает развитие ретикулоцитоза и ограничивает рост уровня ДК, однако антидотная терапия не влияет на антиоксидантную систему эритрона, ПОЛ, осмотическую резистентность и электрический заряд мембран. Включение в схему лечения бемитила (50 мг/кг) восстанавливает большинство нарушенных показателей, в том числе содержание ретикулоцитов, активность СОД, каталазы, Гл-6-ФДГ, осмотическую резистентность и электрический заряд эритроцитарных мембран до уровня интактных животных. ^ после острого отравления карбофосом и коррекции бемитилом и атропином
Примечания: * – статистически достоверное различие (р<0,05) с группой «интактные крысы»;** – статистически достоверное различие (р<0,05) с группой «контроль (карбофос)». О состоянии мембран эритроцитов в условиях отравления карбофосом и применения корригирующей терапии бемитилом и атропином судили также по тушению интенсивности флуоресценции мембранного зонда АНС (табл. 10). Зонд АНС является «универсальным» зондом, который встраивается в поверхностные локусы мембраны и реагирует на различные перестройки, происходящие в мембранах, отражая состояние области белок-липидного взаимодействия (Владимиров Ю.А., Добрецов Г.Е., 1980). Показано статистически значимое уменьшение флуоресценции зонда АНС на 14-е и 21-е сутки как у крыс, отравленных карбофосом, так и у крыс, отравленных карбофосом и леченных атропином, что свидетельствует о нарушении структурной организации мембраны эритроцитов, повышении их микровязкости. Выявленное тушение флуоресценции обусловлено активацией процессов ПОЛ, которые приводят к увеличению поверхностной плотности заряда, увеличению электростатической отталкивающей силы между АНС и мембраной участка связывания АНС и уменьшению флуоресценции системы «АНС – мембрана». В то же время у крыс, отравленных карбофосом и леченных атропином и бемитилом, интенсивность флуоресценции АНС в мембранах эритроцитов оставалась в пределах нормы на протяжении всего опыта (тушение флуоресценции АНС было меньше 3%), что обусловлено мембраностабилизирующими свойствами бемитила. ^ в мембранах эритроцитов крыс, отравленных карбофосом, ((F0-F)/F0)
^ ** – статистически достоверное различие (р<0,002) с группой «интактные крысы»; ^ – статистически достоверное различие (р<0,02) с группой «карбофос»; ^^ – статистически достоверное различие (р<0,001) с группой «карбофос»; # – статистически достоверное различие (р<0,01) с группой «карбофос + атропин»; ## – статистически достоверное различие (р<0,01) с группой «карбофос + атропин»; ^ F0 – интенсивность флуоресценции контроля (интактные крысы); F0 = 0,9±0,02 ед. фл. В то же время у крыс, отравленных карбофосом и леченных атропином и бемитилом, интенсивность флуоресценции АНС в мембранах эритроцитов оставалась в пределах нормы на протяжении всего опыта (тушение флуоресценции АНС было меньше 3%), что обусловлено мембраностабилизирующими свойствами бемитила. Таким образом, включение бемитила в схему лечения отравлений карбофосом предупреждает развитие основных токсических эффектов ФОС: активацию ПОЛ, изменение активности ферментов антиоксидантной системы организма и, соответственно, модификацию важнейших физико-химических свойств мембран – проницаемость, вязкость, фазовое состояние. Оптимальные физико-химические свойства бемитила (коэффициент распределения между полярной и неполярной фазами) обеспечивают его уникальные фармакокинетические параметры и, соответственно, взаимодействие с водорастворимыми и липофильными свободными радикалами. Избирательная кумуляция препарата в эритроцитах при курсовом введении (табл. 21) предупреждает деструкцию липидного бислоя, повышение его микровязкости, предотвращает развитие дезорганизации белкового состава, нарушение функциональной активности ферментов и функционального состояния мембран-рецепторного комплекса в эритроне. В различных модельных системах установлена высокая антирадикальная и антиокислительная активность других производных бензимидазола – этомерзола и соединения Б-16 (табл. 1). Результаты сравнительного исследования влияния монотерапии бемитилом, этомерзолом и соединением Б-16 на процессы ПОЛ при отравлении ФОС представлены в табл. 11 и 12. ^ (отн. ед. оптической плотности/мг липидов, n = 8)
Примечания: * – статистически достоверное различие (р<0,05) с группой «интактные крысы»; ** – статистически достоверное различие (р<0,05) с группой «карбофос». Установлено, что карбофос в дозе 0,8 LD50 вызывает гибель 20% животных и значительно увеличивает активность процессов ПОЛ в головном мозге и сердце крыс на 2–3-и, 6-е и 14-е сутки в постинтоксикационном периоде. На 2–3-и сутки количество ДК в головном мозге у отравленных крыс возрастает в 2,2 раза, а на 14-е сутки – в 3,2 раза (табл. 11). В миокарде крыс, отравленных карбофосом, содержание ДК на 2–3-и сутки увеличивается в 3 раза, а на 14-е сутки – в 3,8 раза. Исследуемые препараты предупреждают чрезмерное накопление ДК примерно в одинаковой степени. Применение бемитила и этомерзола практически нормализует количество ДК в головном мозге на 2–3-и сутки и достоверно снижает их содержание на 14-е сутки, хотя не достигает нормы. В то же время лечение крыс производным бензимидазола – соединением Б-16 – оказывает положительный эффект на 14-е сутки, но не на 2–3-и сутки (табл. 11). Результаты изучения содержания ШО в головном мозге и миокарде крыс, отравленных карбофосом и леченных исследуемыми препаратами, представленные в табл. 12, показывают, что бемитил ингибирует процессы ПОЛ и, в частности, снижает уровень ШО в головном мозге и миокарде подобно этомерзолу и соединению Б-16. |