Скачать 296.2 Kb.
|
На правах рукописи Топоркова Анастасия Константиновна ВЛИЯНИЕ НАНОСТРУКТУРИРОВАННЫХ МНОГОФУНКЦИОНАЛЬНЫХ БИОСОВМЕСТИМЫХ НЕРЕЗОРБИРУЕМЫХ ПОКРЫТИЙ ИНТРАОССАЛЬНЫХ ИМПЛАНТАТОВ НА ПРОЦЕСС ИХ ИНТЕГРАЦИИ В КОСТЬ (экспериментально-морфологическое исследование) 14.00.21- Стоматология 14.00.15 - Патологическая анатомия Автореферат диссертации на соискание ученой степени кандидата медицинских наук Москва - 2009 Работа выполнена в ФГУ «Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии Росмедтехнологий». ^ Доктор медицинских наук, профессор Кулаков Анатолий Алексеевич Доктор медицинских наук, профессор Григорьян Алексей Суренович Официальные оппоненты: Доктор медицинских наук, профессор ^ Доктор медицинских наук, профессор Бабиченко Игорь Иванович Ведущая организация: ФГОУ "Институт повышения квалификации Федерального медико-биологического агентства России" Защита состоится 16 декабря 2009 г. в 10-00 часов на заседании Диссертационного совета (Д.208.111.01) в ФГУ «Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии Росмедтехнологий» по адресу: Москва, 119991, ул. Тимура Фрунзе, д. 16 (конференц-зал). С диссертацией можно ознакомиться в библиотеке ФГУ «Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии Росмедтехнологий» по адресу: Москва, 119991, ул. Тимура Фрунзе, д. 16. Автореферат разослан 16 ноября 2009 г. Ученый секретарь Диссертационного Совета, кандидат медицинских наук И.Е. Гусева ^ Актуальность темы Одной из центральных проблем стоматологии и челюстно-лицевой хирургии в области разработки, апробации и клинического применения дентальных имплантатов и конструкций для черепно-челюстно-лицевого остеосинтеза на сегодняшний день, как и прежде, является их совершенствование путём повышения их интеграционного потенциала и улучшения их прочностных характеристик (В.Л. Параскевич, 2002; Д.А. Хобкек и соавт., 2007; A. Jokstad, 2008; D. G. Olmedo et al., 2009). Согласно данным литературы, оптимальной формой интеграции имплантатов в костную ткань признаётся остеоинтеграция, форма процесса непосредственного контакта имплантата с костной тканью без участия соединительной ткани (В.Ю. Никольский, 2005; А.А. Кулаков и соавт., 2006; А.А. Черниченко и соавт., 2006; M. Haga et al., 2009). Особое значение в формировании интеграционного потенциала имплантатов придаётся физико-химическим характеристикам поверхности последних (С.Г. Ивашкевич, 2007; P. Schupbach, 2005). Для модификации поверхности имплантата (создания шероховатости, микрорельефа) в настоящее время применяются различные методы (пескоструйная обработка, травление кислотами, плазменное напыление титана и т.д.). Однако все эти работающие методы несущественно изменяют интеграционный потенциал имплантата (V.C. Colnot et al., 2007; A. Palmquist et al., 2009). Для улучшения остеоинтеграции имплантатов их поверхность часто покрывают слоем гидроксиапатита, однако низкие прочность, стойкость к ударным нагрузкам и резорбция покрытия ограничивают его применение для конструкций, работающих под нагрузкой в костной системе (В.Н. Лясников и соавт., 2000; В.Ф. Бочкарев и соавт., 2003). Одним из решений проблемы получения нового поколения имплантатов является нанесение на их поверхность биосовместимых нерезорбируемых покрытий. В настоящее время активно используются покрытия на основе карбидов и нитридов титана благодаря их высоким механическим и биоактивным свойствам (Д.В. Штанский и соавт., 2004; S. Piscanec et al., 2004; Y. Dong et al., 2007). Разрабатываются так же новые наноструктурированные многофункциональные биосовместимые нерезорбируемые покрытия (МБНП) на основе карбонитрида титана с добавлением в их состав Ca, P и O, что, как предполагается, позволит получить новый класс материалов, обладающих высоким комплексом механических характеристик, а так же значительным интеграционным потенциалом (Д.В. Штанский и соавт., 2005; Е.А. Левашов и соавт., 2008). Создание отечественных высококачественных наноструктурированных изделий нового поколения с высокими показателями интеграционной активности и при этом более дешевых, чем импортные, обеспечит населению России более доступную дентальную имплантологию и приведет к повышению качества оказываемых стоматологических услуг. Все вышеуказанное свидетельствует об актуальности и перспективности использования наноструктурированных МБНП поверхности внутрикостной части дентальных имплантатов. Исследований интеграционного потенциала этих покрытий в костную ткань проведено не было, что послужило основанием для выполнения настоящей работы. ^ совершенствование имплантатов, применяемых в стоматологии и челюстно-лицевой хирургии, посредством использования наноструктурированных многофункциональных биосовместимых нерезорбируемых покрытий, повышающих интеграционный потенциал имплантатов. ^ 1. Оценить в опытах in vitro интенсивность процессов адгезии и распластывания клеток культуры эмбриональных фибробластов человека на поверхности образцов титановых пластин, а так же нитей и пластин из политетрафторэтилена (ПТФЭ) с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями. 2. Исследовать в опытах на крысах влияние наноструктурированных многофункциональных биосовместимых нерезорбируемых покрытий на процесс интеграции фрагментов титановой проволоки имплантированных в бедренную кость.
^ Впервые в экспериментах in vivo, в том числе на основании данных гистоморфологического исследования, установлено значимое повышение интеграционного потенциала, которое достигается в результате нанесения на внутрикостные имплантаты покрытия состава Ti-Ca-P-C-O-N, и выражается в формировании в периимплантатной зоне новообразованных костных структур, что указывает на течение интеграционного процесса по типу остеоинтеграции. Впервые в опытах in vitro в соответствии с государственным стандартом Российской Федерации ГОСТ Р ИСО 10993.5-99 (Оценка биологического действия медицинских изделий. Часть 5. Исследование на цитотоксичность: методы in vitro) методом прямого контакта с культурой эмбриональных фибробластов человека установлен высокий уровень биологической совместимости имплантационных материалов с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями. Разработан новый гибридный имплантационный материал на основе политетрафторэтилена с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями, который предлагается для устранения дефектов плоских костей [Патент на изобретение №2325191 от 16.02.2007]. Разработана новая экспериментальная модель внутрикостного имплантата, состоящая из политетрафторэтилена с металлическим нанопокрытием, которая позволяет изучать тонкие морфофункциональные характеристики тканевых структур периимплантатной зоны и молекулярные механизмы интеграции имплантационных материалов в кость при помощи гистологических, иммуногистохимических и электронно-микроскопических методов. ^ Разработаны и предлагаются для применения в практической стоматологии и челюстно-лицевой хирургии отечественные высококачественные наноструктурированные многофункциональные биосовместимые нерезорбируемые покрытия дентальных имплантатов, а также конструкций для черепно-челюстно-лицевого остеосинтеза с высокими показателями интеграционной активности и при этом более дешевых, чем импортные. Разработаны и обоснованы для применения в клинике имплантаты нового класса на основе политетрафторэтилена с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями для устранения дефектов плоских костей. ^
^ Результаты диссертационной работы доложены и обсуждены на: всероссийском совещании «Биокерамика в медицине» (Москва, 2006); Симпозиуме «Актуальные вопросы тканевой и клеточной трансплантологии» (Москва, 2007); Британо-Российском совещании по стволовым клеткам «Стволовые клетки: законодательство, исследования и инновации» (Москва, 2007). Предзащитное обсуждение материалов исследования проведено на совместном заседании сотрудников структурных подразделений ФГУ «ЦНИИС и ЧЛХ Росмедтехнологий»: отдела общей патологии; отделения клинической и экспериментальной имплантологии; отделения ортопедической стоматологии и имплантологии; отделения амбулаторной хирургической стоматологии. Публикации Основные результаты диссертационного исследования отражены в 9 научных работах, из них 4 статьи опубликованы в ведущих рецензируемых изданиях, включенных в перечень ВАК РФ; 1 патент на изобретение и 1 монография. ^ Диссертационная работа изложена на 145 страницах машинописного текста, состоит из введения, трех глав, обсуждения, выводов, практических рекомендаций и списка литературы. Работа иллюстрирована 104 рисунками. Список литературы содержит 153 источника, в том числе 46 отечественных и 107 иностранных авторов. ^ Материал и методы исследования Материал исследования. Объектом исследований в настоящей работе явились наноструктурированные МБНП в системах Ti-Ca-P-C-O-N и Ti-Ca-Mn-K-C-O-N, которые имеют уникальное сочетание физико-механических и коррозионных свойств, а именно: пониженный модуль упругости – 170-270 ГПа; высокую адгезионную прочность к подложке до 50 Н; высокую степень упругого восстановления до 75%; низкий коэффициент трения 0.12-0.22; низкую скорость износа – 10-6 - 10-7 мм3/Нм; низкую шероховатость Rrms=0.13-1.5 нм; высокую твердость – 30-40 ГПa; высокое сопротивление пластической деформации 0.9 ГПа, определяемое соотношением H3/E2; высокие значения H/E как показателя долговечности и износостойкости покрытий; отрицательный заряд поверхности при pH=7. В качестве подложек для нанесения покрытий использовали следующие материалы:
Методика получения наноструктурированных МБНП. Для получения наноструктурированных МБНП применяли композиционные мишени составов TiC0.5+10%CaO+2%KMnO4, и ТiC0.5+Ca10(PO4)6(OH)2 синтезированные по технологии силового СВС-компактирования на базе опытно-промышленного участка самораспространяющегося высокотемпературного синтеза Научно-учебного центра СВС МИСиС-ИСМАН. Для нанесения металлического (Ti) покрытия на ПТФЭ использовалась мишень из чистого титана. Осаждение покрытий на подложки осуществляли с применением комбинированной установки вакуумного напыления на базе имплантора высокоэнергетических ионов «Сокол-50/20» в течение 60 минут путем магнетронного распыления композиционных мишеней в газовой смеси аргона с азотом, при парциальном давлении азота 14%. В процессе напыления давление в вакуумной камере и температура подложки составляли соответственно 0.2 Пa и 120-150оС. Толщина покрытия составляла 0.9-1.1 мкм. Методы исследования in vitro с культурой эмбриональных фибробластов человека. Для решения вопроса о способности наноструктурированных МБНП влиять на интенсивность адгезии клеток, их распластывания и пролиферации на поверхности имплантатов использовали стандартную методику исследования на цитотоксичность (ГОСТ Р ИСО 10993.5-99), которая предусматривает проведение инкубации клеточной культуры кожно-мышечных фибробластов эмбрионов человека непосредственно в контакте с испытуемыми образцами. Оценку морфологии и жизнеспособности клеток проводили на инвертированном микроскопе Axiovert 200 (Carl Zeiss, Германия) с использованием метода окрашивания клеток 0.0002% раствором акридинового оранжевого в фосфатном буфере. Для исследования методом сканирующей электронной микроскопии (СЭМ) была проведена процедура фиксации клеток на поверхности материалов. По истечении 72 часов с момента посева клеток образцы промывали 0.1 М фосфатно-солевым буфером (ФСБ), рН 7.4, после чего фиксировали в течение 2 часов 2.5% раствором глутарового альдегида в ФСБ. После удаления фиксирующего раствора образцы промывали ФСБ и проводили дегидратацию материала, после удаления этанола образцы помещали на 30 минут в гексаметилдисилазан, после чего высушивали на воздухе. Окончательное высушивание образцов осуществляли методом перехода через критическую точку на аппарате Hitachi CPD-1 (Critical Point Dryer). После чего их фиксировали на предметные столики и напыляли смесью золото-палладий, используя установку Eiko-IB3 (Ion coater) при следующем режиме: ионный ток – 6 мА, межэлектродное напряжение – 1.5 kV, что позволяло получать толщину слоя напыления около 25 нм. Изучение объектов проводили на аппарате CamScan S-2 (Cambridge Scanning) в режиме регистрации вторичных электронов при ускоряющем напряжении 20 kV. Захват и обработку видеоизображения на персональном компьютере реализовывали с использованием программно-аппаратного комплекса Microcapture 2.2 (системы для микроскопии и анализа). Поскольку данное исследование раскрывает лишь «локальный» адгезионный потенциал испытуемых образцов, в работе были проведены экспериментальные исследования in vivo. Эти исследования проводились по двум разделам:
Методы исследования интеграции образцов титановой проволоки с покрытиями в бедренную кость крыс. Эксперимент выполнен на 48 половозрелых крысах-самцах линии «Вистар», весом 200-250 г, по 4 животных на точку наблюдения. Животные были распределены на 3 группы: Группа 1. Титановая проволока с покрытием Ti-Ca-Mn-K-C-O-N Группа 2. Титановая проволока с покрытием Ti-Ca-P-C-O-N Группа 3. Титановая проволока без покрытия (контроль) Методика экспериментальной операции. В условиях стерильной операционной после обработки операционного поля, под калипсоловым наркозом без предварительной примедикации (калипсол вводился внутрибрюшинно, при необходимости поддержания анестезии калипсол вводился внутримышечно; средняя доза калипсола 16,9±1,1мг/100г веса); произведен разрез кожи и подкожно-жировой клетчатки по передней поверхности левого бедра длинной 15 мм. Края раны мобилизованы, продольно рассечен мышечный слой и надкостница, отпрепарирована передняя поверхность бедренной кости в области диафиза. С помощью бормашины бором №1 произведен продольный пропил кортикальной пластины и губчатого вещества кости длинной 10 мм, шириной 0.5 мм, глубиной 0.5 мм. В полученный дефект костной ткани установлен стерильный имплантат, длинной 10 мм, Ø 0.5 мм. Имплантат фиксирован к бедренной кости двумя лигатурами кетгут 4/0. Рана послойно ушита узловыми швами, полностью укрывая имплантат. Гемостаз произведен по ходу операции. Кожная рана ушита узловыми швами полигликолид 4/0. Животных выводили из опытов в сроки 10, 20, 30 и 90 суток после оперативного вмешательства посредством внутрибрюшинного введения калипсола в летальной дозе (750 мг/кг массы тела экспериментального животного). Материал, подлежащий исследованию (бедренная кость), фиксировали в 10% нейтральном формалине 48 часов. Выделенные и освобожденные от мягких тканей костные фрагменты подвергали декальцинации в 25% Трилоне Б. Имплантаты из титановой проволоки аккуратно удаляли после декальцинации. Тканевые образцы проводили через спирты возрастающих концентраций и заключали в парафин. Срезы готовили с помощью ротационного микротома Microm HM 355S толщиной 6-7 микрон и окрашивали гематоксилином-эозином. Изучение гистопрепаратов и микрофотосъёмку производили в оптической цифровой системе Axioplan 2 imaging (Carl Zeiss, Германия). Для верификации и объективизации данных гистоморфологического исследования использовали морфометрическую полуколичественную оценку состояния тканевых структур периимплантатной зоны по пятибалльной шкале, по ряду критериев: «масштабы» образования волокнистых структур по площади; уровень зрелости волокнистых структур (соотношение удельного веса преколлагеновых и коллагеновых фибрилл); наличие костных структур. Методы исследования интеграции опытных образцов дентальных имплантатов с МБНП в нижнюю челюсть собак. Эксперимент выполнен на 2 беспородных собаках в возрасте 1.5 - 2 лет с массой тела 5000 и 7000 г. ^ . Этап I. В условиях стерильной операционной после обработки операционного поля, под внутримышечным наркозом (Тиопентал натрий 2,5% - 4ml) без предварительной примедикации произвели удаление второго и третьего премоляра с двух сторон на нижней челюсти при помощи бормашины, элеватора и клювовидных щипцов. Произвели кюретаж лунок удаленных зубов. Гемостаз по ходу операции. На лунки наложены сближающие швы кетгутом 3/0. Этап II. Установку имплантатов производили через 3 месяца после удаления зубов. В условиях стерильной операционной после обработки операционного поля, под внутримышечным наркозом (Тиопентал натрий 2,5% - 4ml) без предварительной примедикации произвели разрез слизистой по гребню альвеолярного отростка нижней челюсти слева в области ранее удаленных зубов. Отслоили слизисто-надкостничный лоскут с вестибулярной и язычной сторон на 5 мм. Специальными титановыми фрезами сформировали 4 ложа под имплантаты системы «Конмет». Произвели антисептическую обработку операционного поля 0.05% раствором хлоргексидина. Установили 4 имплантата системы «Конмет» Ø 4.0 мм и длиной 10 мм без покрытия (слева) и с покрытием Ti-Ca-P-C-O-N (справа). Установили заглушки на имплантаты. Слизисто-надкостничный лоскут уложили на место, рану ушили полигликолидом 4/0. Назначили превентивную антибиотикотерапию: Медоцеф 0.5, 1 раз в день, внутримышечно, курсом 5 суток. Динамическое наблюдение. Швы сняты на 8-е сутки. После операции животных содержали преимущественно на мягкой пище, мясо давали исключительно бескостное. Послеоперационный период протекал без осложнений. Собак выводили из экспериментов через 4 месяца после II этапа экспериментальной операции (установки имплантатов) передозировкой Тиопентала натрия. Выделяли нижние челюсти, производили их скелетирование и рентгенологическое исследование. Далее тканевый материал фиксировали в течение 4 суток в 10% нейтральном формалине с ежесуточной сменой растворов. Производили СЭМ исследование зоны контакта имплантат – кость. Методы исследования интеграции образцов ПТФЭ нити с покрытиями в бедренную кость крыс. Эксперимент выполнен на 48 половозрелых крысах-самцах линии «Вистар», весом 200-250 г, по 4 животных на точку наблюдения. Животные были распределены на 4 группы: Группа 1. Нить из ПТФЭ с покрытием Ti-Ca-P-C-O-N Группа 2. Нить из ПТФЭ с покрытием Ti-Ca-Mn-K-C-O-N Группа 3. Нить из ПТФЭ с покрытием Ti (контроль) Группа 4. Нить из ПТФЭ без покрытия (контроль) Методика экспериментальной операции. См. выше. Животных выводили из опытов в сроки 15, 30 и 60 суток после оперативного вмешательства. Проводили гистоморфологическое исследование. Методы исследования интеграции образцов ПТФЭ пластин с МБНП в теменную кость кроликов. Эксперимент выполнен на 6 кроликах-самцах породы Шиншилла, массой ~2500 г. Животные были распределены на 2 группы: Группа 1. Пластины из ПТФЭ с покрытием Тi-Ca-P-C-O-N. Группа 2. Пластины из ПТФЭ без покрытия. Методика экспериментальной операции. В условиях стерильной операционной после обработки операционного поля, под внутримышечным наркозом (Тиопентал натрий 2,5% - 1.5ml) без предварительной примедикации через разрез кожного покрова с помощью фрезы №1 выпиливали и удаляли фрагмент теменной кости (наружную и внутреннюю кортикальные пластины) размерами 10 мм Х 10 мм. После гемостаза на костных краях дефектов 2-мя титановыми микровинтами сечением 2.0 мм и длиной 2.0 мм фиксировали пластины из высокопористого ПТФЭ с покрытием состава Ti-Ca-P-C-O-N (основная группа) и ПТФЭ пластины без покрытия (контроль). Животных выводили из эксперимента передозировкой Тиопентала натрия в сроки 3 и 6 месяцев по 2 животного на срок в подопытной группе и по 1 – в группе контроля. Тканевый материал из области экспериментального воздействия: область дефекта с имплантатами и прилежащей костной тканью в пределах 5 мм (всего тканевый блок составлял порядка 20 мм) подвергали гистоморфологическому исследованию. ^ Результаты проведенных в настоящей работе исследований in vitro, при сопоставлении различных наноструктурированных МБНП (Ti-Ca-Mn-K-C-O-N и Ti-Ca-P-C-O-N), нанесенных на титановые пластины, а так же титановых пластин без покрытия, по эффектам адгезии и распластывания эмбриональных фибробластов человека на поверхности испытанных образцов свидетельствовали о том, что наноструктурированные МБНП значимо усиливают эти эффекты. Такие же результаты были продемонстрированы в наших исследованиях in vitro в отношении ПТФЭ пластин с покрытиями. Особенностью этих экспериментов явилось, в отличие от предыдущего опыта, наличие группы полимерных образцов с покрытием Ti. У всех образцов ПТФЭ пластин с покрытиями обнаруживался выраженный эффект адгезии и распластывания культуральных клеток, в то время как у образцов без покрытия он не наблюдался. В процессе СЭМ исследования с высоким постоянством отмечалось наличие в участках заселения поверхности образцов ПТФЭ с МБНП культуральными клетками «наплывов» гомогенного вещества, которое, по нашему мнению является экстрацеллюлярным матриксом. При этом последний не определялся на электронограммах титановых пластин даже в участках плотного адгезирования культуральных клеток. Вне тела клеток можно было видеть лишь многочисленные псевдоподии и отростки, но никак не «наплывы» биоматрикса. Возможно, столь обильное образование экстрацеллюлярного матрикса связано с повышенной функциональной активностью клеток, оказавшихся в оптимальных для их жизнедеятельности условиях, чему могла определённо способствовать чрезвычайно развитая поверхность высокопористого ПТФЭ с наноструктурированным покрытием. По первому разделу экспериментов in vivo в опытах на крысах были использованы 2 метода морфологического изучения области контакта имплантат – кость: метод СЭМ и гистоморфологический метод. Это обусловлено необходимостью верифицировать данные, полученные с помощью гистоморфологического метода, применение, которого, как известно, сопряжено с необходимостью извлечения металлического имплантата из костного блока до получения срезов. Естественно, применение этой методики таит в себе угрозу разрушения области контакта имплантат – кость, угрозу возникновения артефактов, и как следствие, ошибочных интерпретаций. Для повышения достоверности результатов экспериментального исследования применяли дополнительно метод СЭМ, который позволяет исследовать недекальцинированные тканевые блоки, содержащие имплантаты. Результаты гистоморфологического исследования, СЭМ-исследования, а также проведенной непараметрической морфометрии (табл.1), свидетельствовали о том, что между характеристиками тканевых структур периимплантатной зоны и химическим составом поверхности титановых имплантатов существует прямая корреляция. Качество покрытия имплантата определяло его способность к интеграции, в том числе к остеоинтеграции. Наилучшие по признакам остеоинтеграции характеристики имплантатов были отмечены в опытах с покрытием Ti-Ca-P-C-O-N (превалирование остеоинтеграции). Наихудшие показатели интеграции наблюдались в группах с покрытием Ti-Ca-Mn-K-C-O-N (фиброостеоинтеграция) и без МБНП (фиброинтеграция). Таблица 1 ^
Следует отметить, что на начальных этапах и до 30 суток различия в группах наблюдения по характеристикам периимплантатных тканей были незначительными, в этой зоне преобладали реактивные изменения на экспериментальное воздействие (пропил кости), сопровождавшиеся резорбтивными реакциями кости, воспалением, и образованием клеточноволокнистой соединительной ткани, отделяющей имплантат от костной ткани (рис. 1, 2). Лишь с увеличением сроков наблюдений до 90 суток отмечалось нарастание признаков остеоинтеграции в группах МБНП, однако наиболее чётко этот тип реакции определялся в образцах с покрытием Ti-Ca-P-C-O-N.
Однако, признаки расхождения в характере реакций тканевых структур в периимплантатной зоне по группам наблюдений начинали проявляться уже, начиная с 20 суток наблюдений. Так, при сопоставлении морфологических картин в различных группах наблюдений оптимальные результаты с точки зрения интеграционного процесса были получены в опытах с имплантатами, имеющими покрытие состава Ti-Ca-P-С-O-N. В опытах с образцами этого типа наблюдалось более быстрое созревание соединительнотканной прослойки, отделяющей имплантат от материнской кости. В отличие от других групп наблюдений, в этом случае отсутствовали проявления некроза, а так же резорбтивные изменения в прилежащей к имплантату костной ткани, а так же отмечалось развитие интенсивного остеогенеза в области имплантации. С учётом полученных данных, был спланирован ещё один эксперимент, направленный на решение вопроса о практическом значении выявленных в предыдущем эксперименте (на крысах) данных об оптимизирующем интеграцию имплантатов в кость эффекте МБНП Ti-Ca-P-С-O-N. Результаты экспериментального исследования с установкой винтовых дентальных имплантатов с покрытием и без такового на нижней челюсти собак по данным СЭМ-исследования, через 4 месяца после установки имплантатов, у образцов без покрытия развивалась картина фиброостеоинтеграции, а у имплантатов с МБНП состава Ti-Ca-P-С-O-N - картина остеоинтеграции (рис. 3, 4). Результаты этого эксперимента убедительно свидетельствуют о том, что МБНП состава Ti-Ca-P-С-O-N следует признать перспективным для применения в дентальной имплантологии.
Второй раздел экспериментальных исследований был посвящён изучению интеграционного потенциала ПТФЭ с МБНП и без покрытия. Сама идея обратиться к изучению этого материала в контексте задач настоящего исследования родилась в стремлении найти новую модель для получения информации о структурных проявлениях взаимодействий металлического имплантата с костной тканью в области их контакта. Актуален поиск адекватных методологических подходов к изучению тонких локальных механизмов интеграционного процесса при имплантации титановых имплантатов в кость из-за невозможности изготовления в случае использования рутинных гистологических методов тонких и ультратонких срезов, что затрудняет изучение состояния тканевых структур периимплантатной зоны. Исходная идея состояла в создании «муляжа» (имитации) металлического имплантата состоящего из доступной резке на микротоме основы, в качестве которой был использован ПТФЭ, и нанопокрытия из подлежащего изучению материала (например, титана или керамики). В настоящем исследовании была изучена возможность использования ПТФЭ с наноструктурированным покрытием в качестве пластин для остеосинтеза (краниопластики). Известно, что ПТФЭ представляет собой химически и биологически абсолютно инертный материал. По своим механическим свойствам изделия из него характеризуются как «мягкие» и комфортные для контакта с тканевыми субстратами. Изделия из ПТФЭ отличают высокая прочность и удовлетворительные трибологические показатели. Материалу присущи полное отсутствие токсичности, и соответственно, высокая биосовместимость. Всё это обусловило довольно широкое использование изделий из ПТФЭ в медицине, в том числе в стоматологии и челюстно-лицевой хирургии (В.М. Седов и соавт., 1999; И. В. Михайлов, 2001). В тоже время из-за гидрофобности и соответственно из-за его неспособности к остеоинтеграции ПТФЭ не нашёл широкого применения в костнопластической хирургии (например, для закрытия костных дефектов). Использование ПТФЭ с наноструктурированным МБНП открывает перспективу успешного применения указанного материала в челюстно-лицевой хирургии для вышеуказанной цели. Немаловажным является и то, что производство изделий медицинского назначения из ПТФЭ уже налажено в нашей стране фирмой «Экофлон» (СПб), включено в реестр разрешённых к клиническому применению и уже достаточно широко используется в стоматологии. Эксперименты с имплантатами на основе ПТФЭ, как уже указывалось выше, состояли из 2 серий опытов. Результаты первой серии опытов на крысах, впрочем, как и серия опытов на кроликах, убедительно показали, что образцы из ПТФЭ с наноструктурированными покрытиями действительно могут с успехом использоваться для изучения тканевых структур периимплантатной зоны. Более того, эта модель позволит оценить корреляцию химического состава поверхности имплантата с характером протекающих на ней (на поверхности) интеграционных процессов. В проведенных экспериментах было подтверждено априорное предположение, что сам по себе ПТФЭ без покрытия в том виде, как он использовался в настоящей работе, не позволяет достичь высокого уровня интеграции имплантатов в костную ткань. Было показано, что по выраженности остеоинтеграции, по отсутствию воспалительной реакции и отсутствию повреждающего воздействия на костную ткань оптимальным покрытием является наноструктурированное МБНП Ti-Ca-P-C-O-N (рис. 5). Оно сообщает имплантатам из ПТФЭ высокий остеоинтеграционный потенциал, который у этого полимера без покрытия отсутствует (рис. 6).
В порядке обсуждения условий эксперимента во второй группе опытов второй экспериментальной серии следует указать на то, что у подопытных кроликов воспроизводили не просто обширные дефекты свода черепа, а критические, которые обычно самостоятельно полностью не закрываются в результате «физиологической» регенерации костной тканью. В экспериментах с высокопористыми пластинами из ПТФЭ с наноструктурированным МБНП состава Ti-Ca-P-С-O-N, было показано, что в таком виде имплантаты на основе ПТФЭ обладают высоким интеграционным потенциалом (рис. 7). Как правило, в поры имплантата происходило активное врастание новообразованного костного вещества, а так же тяжей клеточноволокнистой соединительной ткани (рис. 8). Отмечалась интенсивная регенерация костной ткани в краях дефекта, в результате чего к 6 месяцам эксперимента произошло значимое уменьшение размеров костного дефекта. При использовании в эксперименте ПТФЭ пластин без покрытия, описанные выше эффекты, не наблюдались, отсутствовало прорастание костных структур в поры имплантата, а соединительная ткань крайне индифферентного вида не столь активно проникала в его поры.
Полученные данные могут служить основательной предпосылкой для разработки и внедрения в клиническую практику нового типа имплантатов для костно-пластической черепно-челюстно-лицевой хирургии на основе ПТФЭ с наноструктурированными МБНП. Выводы 1. В опытах in vitro с культурой кожно-мышечных фибробластов человека установлено, что наноструктурированные многофункциональные биосовместимые нерезорбируемые покрытия с химическим составом Ti-Ca-P-O-N и Ti-Ca-Mn-K-C-O-N сообщают образцам титановых пластин повышенную, по сравнению с образцами без покрытия, способность к адгезии и распластыванию эмбриональных фибробластов человека. Интенсивная адгезия и распластывание этих клеток наблюдались так же на поверхности образцов нитей и пластин из политетрафторэтилена с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями. На поверхности образцов из политетрафторэтилена без покрытий адгезия клеток, практически, отсутствовала. 2. Как показали результаты экспериментально-морфологического исследования, проведенного на крысах, образцы титановой проволоки с наноструктурированными покрытиями, имплантированные в бедренную кость подопытных животных, активно интегрируют в костную ткань, причём характер интеграции коррелировал с химическим составом покрытий. Оптимальным образом этот процесс протекал по типу остеоинтеграции и фиброостеоинтеграции при составе покрытия Ti-Ca-P-С-O-N. Наихудший эффект по показателям интеграционного потенциала был получен в опытах с образцами проволоки с покрытиями Ti-Ca-Mn-K-C-O-N и с образцами без покрытия. В этих группах опыта наблюдался эффект фиброинтеграции имплантатов. 3. В опытах на собаках с имплантацией в участки экспериментально воспроизведенной адентии нижней челюсти дентальных винтовых имплантатов фирмы «Конмет» с покрытием состава Ti-Ca-P-С-O-N и без покрытия (контроль), по данным СЭМ, в периимплантатной зоне через 4 месяца у имплантатов с наноструктурированным МБНП наблюдалось развитие процесса остеоинтеграции, а у имплантатов контрольной группы - фиброинтеграции. 4. В опытах на крысах с политетрафторэтиленовыми нитями с покрытиями, и без таковых имплантированными в бедренную кость, было показано, что покрытия состава Ti-Ca-P-C-O-N и Ti сообщают имплантатам из политетрафторэтилена высокий остеоинтеграционный потенциал, которым сам полимер не обладает. 5. В опытах на кроликах, на основании результатов гистоморфологического исследования, установлено, что при реконструкции высокопористыми политетрафторэтиленовыми пластинами с покрытием Ti-Ca-P-C-O-N критических дефектов свода черепа кроликов происходит спаяние имплантатов с костной тканью краёв костных дефектов за счет прорастания новообразованных костных структур в поры политетрафторэтилена. В сроки 6 месяцев эксперимента у кроликов отмечалось значительное уменьшение размеров дефекта, что явилось результатом активной регенерации костной ткани в области его краёв. При краниопластике политетрафторэтиленовыми пластинами без покрытия между имплантатом и костью образовывалась фиброзная прослойка, что соответствовало развитию процесса фиброинтеграции. Практические рекомендации 1. Рекомендуется дальнейшая разработка на основе данных, полученных в настоящем исследовании, в рамках программы НИР (г/к 02.513.11.3179 и 02.523.11.3007) по наноструктурированным многофункциональным биосовместимым нерезорбируемым покрытиям Ti-Ca-P-C-O-N имплантатов и имплантационных материалов с целью повышения их эффективности и их внедрения в клиническую практику хирургической стоматологии и челюстно-лицевой хирургии. 2. Рекомендуется внедрение в клиническую практику хирургической стоматологии дентальных имплантатов с наноструктурированным многофункциональным биосовместимым нерезорбируемым покрытием состава Ti-Ca-P-C-O-N. 3. Рекомендуется внедрение в клиническую практику титановых конструкций с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями для черепно-челюстно-лицевого остеосинтеза (реконструктивные пластины, мини- и микропластины, стержни, спицы, винты и прочие фиксаторы). 4. Рекомендуется использование нового гибридного имплантационного материала на основе политетрафторэтилена с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями для устранения обширных дефектов плоских костей черепа. 5. Рекомендуется применение имплантата на основе политетрафторэтилена с металлическими нанопокрытиями для исследования морфофункциональных характеристик тканевого субстрата в области контакта поверхности внутрикостного имплантата с тканевыми структурами периимплантатной зоны посредством рутинных гистологических методов без извлечения имплантата из окружающих тканей. ^
|