|
Скачать 1.36 Mb.
|
Тема 7 ^ ВОЗРАСТНЫЕ ОСОБЕННОСТИ ДЫХАТЕЛЬНОЙ СИСТЕМЫ Учебные вопросы: 1. Значение дыхательной системы. 2. Строение дыхательной системы. 3. Практическое определение, расчет и оценка важнейших показателей функционального состояния дыхательной системы (частота дыхания, ЖЕЛ). 7.1. Значение дыхания Дыхание - необходимый для жизни процесс постоянного обмена газами между организмом и окружающей средой. Дыхание обеспечивает постоянное поступление в организм кислорода, необходимого для осуществления окислительных процессов, являющихся основным источником энергии. Без доступа кислорода жизнь может продолжаться лишь несколько минут. При окислительных процессах образуется углекислый газ, который должен быть удален из организма. В понятие дыхание включают следующие процессы: - внешнее дыхание – обмен газов между внешней средой и легкими, - обмен газов в легких между альвеолярным воздухом и кровью капилляров, - транспорт газов кровью, перенос кислорода от легких к тканям и углекислого газа из тканей в легкие; - обмен газов в тканях; - внутреннее, или тканевое дыхание – биологические процессы, происходящие в митохондриях клеток. Нарушение любого из этих процессов создает опасность для жизни человека. ^ Дыхательная система человека включает: - воздухоносные пути, к которым относятся полость носа, носоглотка, гортань, трахея, бронхи; - легкие – состоящие из бронхиол, альвеол и богато снабженные кровеносными сосудами; - костно-мышечную систему, обеспечивающую дыхательные движения: к ней относятся ребра, межреберные и другие вспомогательные мышцы, диафрагма. Все звенья дыхательной системы претерпевают с возрастом существенные структурные преобразования, что определяет особенности дыхания детского организма на разных этапах развития. ![]() Рис.7.1.Воздухоносные пути дыхательной системы человека: 1,2,3 — носовые раковины; 4 — полость рта; 5 — язык; 6 — твердое нёбо; 7— мягкое нёбо; 8 — носоглотка; 9 — надгортанник; 10 — гортань; 11 — пищевод Воздухоносные пути (рис.7.1.) начинаются носовой полостью. Слизистая оболочка носовой полости обильно снабжена кровеносными сосудами и покрыта многослойным мерцательным эпителием. В эпителии много железок, выделяющих слизь, которая вместе с пылевыми частицами, проникшими со вдыхаемым воздухом, удаляется мерцательными движениями ресничек. В носовой полости вдыхаемый воздух согревается, частично очищается от пыли и увлажняется. К моменту рождения носовая полость ребенка недоразвита, она отличается узкими носовыми отверстиями и практически отсутствием придаточных пазух, окончательное формирование которых происходит в подростковом возрасте. Объем носовой полости с возрастом увеличивается примерно в 2,5 раза. Структурные особенности носовой полости детей раннего возраста затрудняют носовое дыхание, дети часто дышат с открытым ртом, что приводит к подверженности простудным заболеваниям. Из полости носа воздух попадает в носоглотку – верхнюю часть глотки. В глотку открываются также гортань и слуховые трубы, соединяющие полость глотки со средним ухом. Глотка ребенка отличается меньшей длиной, большей шириной и низким расположением слуховой трубы. Особенности строения носоглотки приводят к тому, что заболевания верхних дыхательных путей у детей часто осложняются воспалением среднего уха, так как инфекция легко проникает в ухо через широкую и короткую слуховую трубу. Следующее звено воздухоносных путей – гортань. Скелет гортани образован хрящами, соединенными между собой суставами, связками и мышцами. Полость гортани покрыта слизистой оболочкой, которая образует две пары складок, замыкающих вход в гортань во время глотания. Пространство между голосовыми связками называют голосовой щелью. Таким образом, гортань не только связывает глотку с трахеей, но и участвует в речевой функции. ![]() Рис.7.2. Положение голосовых связок при различных функциональных состояниях. Голосовая щель закрыта (I), открыта при спокойном дыхании (II), резко расширена (при голосообразовании) (III). В период полового созревания появляются половые различия в строении гортани. У мальчиков образуется кадык, удлиняются голосовые связки, гортань становится шире и длиннее, чем у девочек, происходит ломка голоса. От нижнего края гортани отходит трахея. Длина ее увеличивается в соответствии с ростом туловища. Трахея разветвляется на два бронха, правый из которых более короткий и широкий. Наибольший рост бронхов происходит в первый год жизни и в период полового созревания. Слизистая оболочка воздухоносных путей у детей более обильно снабжена кровеносными сосудами, нежна и ранима, она содержит меньше слизистых желез, предохраняющих ее от повреждения. Легкие. С возрастом существенно изменяется и структура основного органа дыхания – легких (рис.7.3.). Первичных бронх, вступив в ворота легких делится на более мелкие бронхи, которые образуют бронхиальное дерево. Самые тонкие веточки его называют бронхиолами. Бронхиолы разветвляются на альвеолярные ходы с мешочками, стенки которых образованы множеством легочных пузырьков – альвеол. Альвеолы являются конечной частью дыхательного пути. Стенки легочных пузырьков состоят из одного слоя плоских эпителиальных клеток. Каждая альвеола окружена снаружи густой сетью капилляров. Через стенки альвеол и капилляров происходит обмен газами – из воздуха в кровь переходит кислород, а из крови в альвеолы поступают углекислый газ и пары воды. В легких насчитывают до 350 млн. альвеол, а их поверхность достигает 150 м2. Каждое легкое покрыто серозной оболочкой, называемой плеврой. У плевры два листка. Один плотно сращен с легким, другой приращен к грудной клетке. Между обоими листками – небольшая плевральная полость, заполненная серозной жидкостью (около 1-2 мл), которая облегчает скольжение листков плевры при дыхательных движениях. ![]() Рис.7.3. Схема строения легких (А) и легочных альвеол (Б). А: 1 — гортань; 2 — трахея; 3 — бронхи; 4 — бронхиолы; 5 — легкие. Б: 1 — сосудистая сеть; 2, 3 — альвеолы снаружи и в разрезе; 4 — бронхиола; 5 — артерия и вена Легкие у детей растут главным образом за счет увеличения объема альвеол (у новорожденного диаметр альвеолы 0,07 мм, у взрослого он достигает уже 0,2 мм). Дыхательные движения. Обмен газов между атмосферным воздухом и воздухом, находящимся в альвеолах, происходит благодаря ритмическому чередованию актов вдоха и выдоха. В легких нет мышечной ткани, и поэтому активно они сокращаться не могут. Активная роль в акте вдоха и выдоха принадлежит дыхательным мышцам. При параличе дыхательных мышц дыхание становится невозможным, хотя органы дыхания при этом не поражены. Легкие, находясь в герметически закрытой грудной клетке, пассивно следуют во время вдоха и выдоха за ее движущимися стенками, так как при помощи плевры они приращены к грудной клетке. ^ сокращаются наружные межреберные мышцы и диафрагма. Межреберные мышцы приподнимают ребра и отводят их несколько в сторону. Объем грудной клетки при этом увеличивается. При сокращении диафрагмы ее купол уплощается, что также ведет к увеличению объема грудной клетки. ^ дыхательные мышцы расслабляются, ребра опускаются до исходного положения, купол диафрагмы приподнимается, объем грудной клетки, а следовательно, и легких уменьшается и воздух выдыхается наружу. У новорожденных преобладает диафрагмальное дыхание с незначительным участием межреберных мышц. Постепенно дыхание грудных детей становится грудобрюшным, с преобладанием диафрагмального, причем в верхнем отделе грудной клетки подвижность остается все еще небольшой. В возрасте от 3 до 7 лет в связи с развитием плечевого пояса все более начинает преобладать грудной тип дыхания, и к 7 годам он становится выраженным. В 7-8 лет выявляются половые отличия в типе дыхания: у мальчиков становится преобладающим брюшной тип дыхания, у девочек — грудной. Заканчивается половая дифференцировка дыхания к 14-17 годам. Следует заметить, что тип дыхания у юношей и девушек может меняться в зависимости от занятий спортом, трудовой деятельностью. В легких происходит газообмен между вдыхаемым воздухом и кровью. Из альвеол легких путем диффузии в кровь легочных капилляров поступает кислород, а в обратном направлении — из крови в альвеолы выходит углекислый газ. Интенсивному газообмену между воздухом альвеол и кровью способствует малая толщина так называемого аэрогематического барьера. Этот барьер между воздухом и кровью образован стенкой альвеолы и стенкой кровеносного капилляра. Толщина барьера — около 2,5 мкм. Стенки альвеол построены из однослойного плоского эпителия, покрытого изнутри, со стороны просвета альвеол, тонкой пленкой фосфолипида — сурфактантом. Сурфактант препятствует слипанию альвеол при выдохе и понижает поверхностное натяжение. Альвеолы оплетены густой сетью кровеносных капилляров, что сильно увеличивает площадь, на которой совершается газообмен между воздухом и кровью. ![]() ^ 1 - просвет альвеолы; 2 — стенка альвеолы; 3 — стенка кровеносного капилляра; 4 — просвет капилляра; 5 — эритроцит в просвете капилляра. Стрелками показан путь кислорода (О2), углекислого газа (СО2) через аэрогематический барьер (между кровью и воздухом) ^ (частота дыхания, ЖЕЛ) Возрастные особенности строения грудной клетки и мышц обусловливают особенности глубины и частоты дыхания в детском возрасте. Взрослый человек делает в среднем 15-17 дыхательных движений в минуту, за один вдох при спокойном дыхании вдыхается 500 мл воздуха. Объем воздуха, поступающий в легкие за один вдох, характеризует глубину дыхания. Дыхание новорожденного ребенка частое и поверхностное. Частота подвержена значительным колебаниям — 48-63 дыхательных циклов в минуту во время сна. С возрастом происходит урежение дыхания. ^ — это количество воздуха, которое человек вдыхает за 1 мин; он определяется произведением величины вдыхаемого воздуха на число дыхательных движений за 1 мин. У новорожденного минутный объем дыхания составляет 650-700 мл воздуха, у взрослого человека — 5000-6000 мл. Важной характеристикой функционирования дыхательной системы является жизненная емкость легких — наибольшее количество воздуха, который человек может выдохнуть после глубокого вдоха. Жизненная емкость воздуха легких меняется с возрастом, зависит от длины тела, степени развития грудной клетки и дыхательных мышц, пола. Обычно она больше у мужчин, чем у женщин. У спортсменов жизненная емкость легких больше, чем у нетренированных людей: у штангистов, например, она составляет около 4000 мл, у футболистов — 4200, у гимнастов — 4300, у пловцов — 4900, у гребцов — 5500 мл и более. Так как измерение жизненной емкости легких требует активного и сознательного участия самого ребенка, то она может быть определена лишь после 4-5 лет. К 16-17 годам жизненная емкость легких достигает величин, характерных для взрослого человека. Для определения жизненной емкости легких используется прибор спирометр. Жизненная емкость является важным показателем физического развития. Средняя величина жизненной емкости легких (в мл): юноши (17 лет) – 3520 мл, девушки (17 лет) – 2760 мл. Тема 8 ^ ВОЗРАСТНЫЕ ОСОБЕННОСТИ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ Учебные вопросы: 1. Значение пищеварения. 2. Общий план строения пищеварительной системы. 3. Пищеварение в ротовой полости. 4. Пищеварение в желудке. 5. Роль печени и поджелудочной железы в пищеварении. 6. Пищеварение в кишечнике. ^ Для нормальной жизнедеятельности организма, его роста и развития необходимо регулярное поступление пищи, содержащей сложные органические вещества (белки, жиры, углеводы), минеральные соли, витамины и воду. Все эти вещества необходимы для удовлетворения потребности организма в энергии, для осуществления биохимических процессов, протекающих во всех органах и тканях. Органические соединения используются также как строительный материал в процессе роста организма и воспроизведения новых клеток взамен отмирающих. Основные питательные вещества в том виде, в каком они находятся в пище, не могут использоваться организмом, а должны быть подвергнуты специальной обработке — пищеварению. Пищеварение — это процесс физической и химической обработки пищи и превращения ее в более простые и растворимые соединения, которые могут всасываться, переноситься кровью, усваиваться организмом. Физическая обработка заключается в измельчении пищи, ее протирании, растворении. Химические изменения представляют собой сложные реакции, происходящие в различных отделах пищеварительной системы, где под влиянием ферментов, содержащихся в секретах пищеварительных желез, происходит расщепление сложных нерастворимых органических соединений, содержащихся в пище, превращение их в растворимые и легко усваиваемые организмом вещества. Ферменты — это биологические катализаторы, вырабатываемые организмом и отличающиеся определенной специфичностью. Каждый фермент действует только на определенные химические соединения: одни расщепляют белки, другие — жиры, третьи — углеводы. В пищеварительном тракте в результате химической обработки белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, углеводы (полисахариды) — до моносахаридов. В каждом из отделов пищеварительной системы происходят специализированные операции по обработке пищи, связанные с наличием в каждом из них специфических ферментов. Общий план строения пищеварительной системы. Система органов пищеварения (рис.8.1.) состоит из ротовой полости с тремя парами крупных слюнных желез, глотки, пищевода, желудка, тонкой кишки, в состав которой входит двенадцатиперстная кишка (в нее открываются протоки печени и поджелудочной железы) тощая и подвздошная кишки, и толстой кишки, состоящей из слепой, ободочной и прямой кишок. В ободочной кишке различают восходящую, нисходящую и сигмовидную кишки. ![]() ^ В ротовой полости начинается физическая и химическая обработка пищи, а также осуществляется ее апробирование. С помощью специальных рецепторов в слизистой оболочке ротовой полости и языка мы распознаем вкус пищи, от их функции зависит удовлетворение и неудовлетворение едой. Специфической функцией ротовой полости является механическое измельчение пищи при ее пережевывании. Язык - подвижный мышечный орган — имеет важнейшее значение не только в осуществлении речевой функции, но и в пищеварении. Передвижение пищи с помощью языка — необходимый компонент жевания. Измельчение пищи осуществляется зубами. По функции и форме различают резцы, клыки, малые и большие коренные зубы. Общее число зубов у взрослых — 32. У каждого зуба различают коронку, шейку, корень. Коронка располагается над десной. Шейка находится на границе между корнем и коронкой. В этом месте с зубом соприкасается слизистая оболочка десен. Корень расположен в альвеоле, он оканчивается верхушкой, на которой имеется маленькое отверстие, через которое в зуб входят сосуды и нервы. Внутри зуба имеется небольшая полость, в которой находится зубная пульпа, в которой разветвляются кровеносные сосуды и нервы. У каждого зуба имеется один корень (у резцов, клыков), два или три корня (у коренных зубов). Корни зубов плотно срастаются со стенками зубных ячеек, при помощи тонкого слоя соединительной ткани — периодонта. Все зубы построены в основном из дентина. Дентин в области коронки покрыт тонким слоем эмали, наружный слой корня образован цементом. Эмаль представляет собой очень плотное, прочное вещество, в котором 96-97% их массы принадлежит неорганическим соединениям. В основном это фосфорнокислый, углекислый и фтористый кальций. В дентине присутствует около 28% органических веществ (главным образом, коллагена), 72% составляют неорганические соединения (фосфорно-кислый и фтористый кальций, а также другие соли). Цемент по своему составу близок к кости. На 29,6% цемент состоит из органических веществ и на 70,4% — из неорганических (преимущественно фосфорнокислый и углекислый кальций). На 6-8-м месяце у ребенка начинают прорезываться временные, или молочные зубы. Зубы могут появляться раньше или позднее в зависимости от индивидуальных особенностей развития, качества питания. Чаще всего первыми прорезываются средние резцы нижней челюсти, потом появляются верхние средние и верхние боковые; к концу первого года жизни прорезывается обычно 8 зубов. В течение второго года жизни, а иногда и начала третьего года заканчивается прорезывание всех 20 молочных зубов. Молочные зубы нежные и хрупкие, это следует учитывать при организации питания детей. В 6-7 лет у детей начинают выпадать молочные зубы, и на смену им постепенно растут постоянные зубы. Перед сменой корни молочных зубов рассасываются, после чего они выпадают. Малые коренные и третьи большие коренные, или зубы мудрости, вырастают без молочных предшественников. Прорезывание постоянных зубов заканчивается к 14 годам. Исключение составляют зубы мудрости, появление которых порой задерживается до 25-30 лет; в 15% случаев они отсутствуют на верхней челюсти вообще. ![]() Рис.8.2. Строение зуба: 1 — эмаль; 2 — дентин; 3 — пульпа зуба; 4 — десна; 5 — цемент; 6 — периодонт; 7 — кость. I — коронка зуба; II — шейка зуба; III — корень зуба; IV — канал корня зуба Наряду с измельчением пищи в ротовой полости происходит смачивание ее слюной и начальный гидролиз некоторых пищевых веществ. В ротовую полость открываются протоки трех пар крупных слюнных желез: околоушные, поднижнечелюстные и подъязычные. Кроме крупных есть мелкие слизистые слюнные железки. Они разбросаны почти по всей слизистой оболочке ротовой полости и языка. Слюна, содержащая 99% воды, смачивает измельченную пищу. В составе ее органических веществ содержатся ферменты, осуществляющие химическую обработку пищи. Основной из этих ферментов — амилаза — расщепляет сложные углеводы до мальтозы. Расщепление углеводов не заканчивается в ротовой полости, но продолжается в желудке до тех пор, пока пищевой комок не пропитается желудочным соком, так как ферменты, расщепляющие углеводы, действуют только в щелочной среде. В слюне содержится также слизистое органическое вещество муцин. Он способствует тому, что обработанный в ротовой полости комок становится скользким и легко проходит по пищеводу — мышечной трубке, выстланной внутри слизистой оболочкой. Длина пищевода с возрастом увеличивается. ^ Желудок имеет вид изогнутого мешка, вмещающего 1-2 л пищи. Изнутри желудок выстлан слизистой оболочкой, образующей много складок. В толще слизистой оболочки находятся железы, вырабатывающие желудочный сок. ^ человека — бесцветная жидкость кислой реакции, с большим содержанием соляной кислоты (0,5%) и слизи. Слизь, вырабатываемая клетками слизистой оболочки желудка, предохраняет ее от механических и химических повреждений. Соляная кислота обладает способностью губительно действовать на бактерии, выполняя тем самым защитную функцию. Под влиянием соляной кислоты активизируется основной фермент желудочного сока пепсин, расщепляющий белки. Желудочный сок содержит также фермент, расщепляющий жиры, - липазу. В желудке распадаются на глицерин и жирные кислоты только жиры, находящиеся в состоянии эмульсии (жиры молока). В желудочном соке детей, особенно в период вскармливания их молоком, содержится сычужный фермент — химозин, вызывающий свертывание молока. Отделение желудочного сока начинается рефлекторно, уже тогда, когда пища попадает в полость рта. Оно может возникнуть и условнорефлекторно. Обычно акт еды начинается с вида и запаха пищи. И.П.Павлов назвал желудочный сок, который начинает выделяться до поступления пищи, аппетитным или запальным. Он подготавливает желудок к перевариванию пищи и является важным условием, облегчающим этот процесс. Под влиянием различных воздействий отделение желудочного сока может тормозиться. Вид несвежей пищи, неприятный запах ее, неряшливая обстановка, чтение во время еды приводит к торможению желудочной секреции, при этом снижается пищеварительное действие соков и пища усваивается хуже. Когда пища поступает в желудок, на нее продолжает рефлекторно вырабатываться желудочный сок за счет механического раздражения слизистой оболочки желудка. Нужная роль здесь также принадлежит химическим веществам, циркулирующим в крови при пищеварении и гуморальным путем возбуждающим желудочную секрецию. Особенно активны в этом отношении вещества, содержащиеся в мясном бульоне, капустном отваре, отварах рыбы, грибов, овощей. Кроме того, под влиянием соляной кислоты или продуктов переваривания в слизистой оболочке желудка образуется особый гормон — гастрин, который всасывается в кровь и усиливает секрецию желудочных желез. С возрастом как строение, так и функция желудка изменяются. Мышечный слой желудка, способствующий перемешиванию пищи с желудочным соком и ее перемещению по желудку, у детей раннего возраста развит слабо, в особенности в области дна желудка. Недоразвитие мышечного слоя дна желудка, относительно широкий вход в него у детей грудного возраста часто являются причиной срыгивании и рвоты. В составе желудочного сока новорожденного ребенка есть ферменты пепсин, химозин, липаза, молочная кислота и связанная соляная кислота. В связи с низкой кислотностью желудочного сока пепсин у новорожденных детей способен расщеплять лишь белки, входящие в состав молока. ^ Частично переварившееся содержимое желудка в виде пищевой кашицы, пропитанной кислым желудочным соком, перемещается в двенадцатиперстную кишку. Здесь пищевая масса обрабатывается соком двух основных пищеварительных желез — печени и поджелудочной железы и соком мелких кишечных желез. Под влиянием содержащихся в них ферментов происходит наиболее интенсивная химическая переработка белков, жиров и углеводов, которые, подвергаясь дальнейшему расщеплению, доводятся в двенадцатиперстной кишке до такого состояния, что могут всасываться и усваиваться организмом. Сок, выделяемый поджелудочной железой,— бесцветная прозрачная жидкость щелочной реакции. В нем есть фермент трипсин, расщепляющий белковые вещества до аминокислот. Трипсин вырабатывается в неактивной форме клетками железы и активируется ферментом кишечного сока. Содержащийся в соке фермент липаза активируется желчью, поступающей из печени и желчного пузыря, и, действуя на жиры, превращает их в глицерин и жирные кислоты. Ферменты амилаза и мальтаза превращают сложные углеводы в моносахариды типа глюкозы. Печень — самая крупная железа, большая часть ее расположена в правой подреберной области. У взрослого человека ее вес достигает 1,5 кг. Желчь непрерывно отделяется печеночными клетками. Она играет важную роль в пищеварении. Желчь, во-первых, переводит в активное состояние липазу, вырабатывающуюся клетками поджелудочной железы, и активизирует другие ферменты; во-вторых, желчь эмульгирует жиры, превращая их во взвесь мелких капелек (эмульгированные жиры легче перевариваются), в-третьих, желчь активно влияет на процессы всасывания в тонкой кишке; в-четвертых, желчь способствует усилению отделения сока поджелудочной железы. ^ Из двенадцатиперстной кишки в основном переварившиеся пищевые вещества поступают в тонкий кишечник, откуда в подвздошную кишку. В тонком кишечнике продолжается переваривание питательных веществ, находящихся в химусе. В составе кишечного сока обнаружено свыше 20 ферментов, способных катализировать расщепление пищевых веществ. Однако основной функцией тонкого кишечника является всасывание. Внутренняя поверхность кишки человека имеет многочисленные складки. Она увеличивается за счет пальцевидных выступов — ворсинок: на площади 1 см2 располагается 2000-3000 ворсинок. Эпителий ворсинок, в свою очередь, имеет многочисленные выросты — микроворсинки. Всасывание - сложный физиологический процесс, происходящий главным образом за счет активной работы клеток кишечного эпителия. Белки всасываются в кровь в виде водных растворов аминокислот. В связи с тем, что для детей характерна повышенная проницаемость кишечной стенки, в небольшом количестве у них из кишечника всасываются натуральные белки молока, яичный белок. Избыточное поступление в организм ребенка нерасщепленных белков приводит к разного рода кожным высыпаниям, зуду и другим неблагоприятным явлениям. В связи с тем, что проницаемость кишечной стенки у детей повышена, чужеродные вещества и кишечные яды, образующиеся в процессе гниения пищи, продукты неполного переваривания могут попадать из кишечника в кровь, вызывая разного рода токсикозы, хотя часть этих вредных продуктов обезвреживается в печени, выполняющей барьерную функцию. Движение пищевых масс выполняется в результате сокращения циркулярного и продольного мышечных слоев в стенках тонкой кишки. Выделяют два вида движений тонкокишечных петель: перистальтических и маятникообразных. Перистальтика в виде сократительных волн возникает в начальных отделах тонкой кишки, затем эти волны пробегают до слепой кишки. При этом пищевые массы перемешиваются с кишечным соком (это ускоряет процесс переваривания) и продвигаются в сторону толстой кишки. При маятникообразных движениях мышечные слои тонкой кишки то сокращаются на коротком участке, то расслабляются. При этом пищевые массы передвигаются в просвете кишки то в одном, то в другом направлениях. В результате происходит интенсивное перемешивание пищевых масс. Из тонкой кишки не всосавшиеся в ее кровеносные и лимфатические капилляры остатки пищи через подвздошно-слепокишечное отверстие поступают в толстую кишку. В толстой кишке всасываются вода и растворенные в ней соли. Остатки непереваренной пищи формируют каловые массы, которые удаляются из организма. Тема 9 ^ ОСОБЕННОСТИ ОСНОВНЫХ АНАЛИЗАТОРНЫХ СИСТЕМ Учебные вопросы. 1. Понятие об анализаторах. 2. Зрительный анализатор. 3. Аккомодация. 4. Близорукость и дальнозоркость. 5. Слуховой анализатор. ^ Восприятие как сложный системный процесс приема и обработки информации осуществляется на основе функционирования специальных сенсорных систем или анализаторов. Эти системы осуществляют превращение раздражителей внешнего мира в нервные сигналы и передачу их в центры головного мозга. На разных уровнях головного мозга сигналы преобразуются и перекодируются. Преобразование сенсорных сигналов в высших отделах центральной нервной системы завершается ощущениями и представлениями, опознанием образов. Анализатор – единая система анализа информации, состоящей из трех взаимосвязанных отделов: периферического, проводникового и центрального. ^ анализатора представлен рецепторами (чувствительными нервными окончаниями) или специализированными нервными клетками, реагирующими на определенные изменения в окружающей среде. Рецепторы различны по строению, местоположению и функциям. Некоторые рецепторы имеют вид сравнительно просто устроенных нервных окончаний, другие являются отдельными элементами сложно устроенных органов чувств, как, например сетчатка глаза. ^ представлен чувствительными нейронами, по которым нервный импульс от рецептора передается в кору больших полушарий. Центральный отдел анализатора – это участок коры больших полушарий головного мозга, воспринимающий информацию от соответствующих рецепторных образований. Все части анализатора действуют как единое целое. Нарушение деятельности одной из частей вызывает нарушение функций всего анализатора. С помощью анализаторов человек познает окружающий мир. Особенно велика роль анализаторов в трудовой деятельности. Если ограничить поступление в центральную нервную систему раздражений с разных органов чувств или полностью исключить их, то наблюдается задержка в развитии мозга, интеллекта. Анализ воспринимаемых раздражений начинается уже в рецепторной части анализатора. Здесь идет простейший анализ и раздражение трансформируется в процессе возбуждения. Более совершенный анализ происходит в подкорковых образованиях, результатом чего является выполнение сложных врожденных актов (вставание, настораживание, поворот головы к источнику света или звука, поддержание положения тела и др.). Высший, наиболее тонкий анализ осуществляется в коре больших полушарий головного мозга, в корковом отделе анализатора. Среди сенсорных систем организма различают: зрительную, слуховую, вестибулярную, вкусовую, обонятельную, соматосенсорную систему (ее рецепторы расположены в коже и воспринимают прикосновение, давление, вибрацию, тепло, холод, боль; в эту систему также поступают импульсы от рецепторов, воспринимающих движения в суставах и мышцах), висцеральную сенсорную систему (ее рецепторы расположены во всех внутренних органах и воспринимают раздражения во внутренней среде организма). ^ Форма глаза шаровидная. У взрослых диаметр его составляет около 24 мм, у новорожденных – около 16 мм. Глазное яблоко состоит из трех оболочек (рис.9.1.): - наружная оболочка глаза – склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм. В передней части она переходит в прозрачную роговицу. - средняя оболочка глаза – сосудистая. Она содержит большое количество кровеносных сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное тело и радужную оболочку (радужку). В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну. Хрусталик – это прозрачное эластичное образование, имеющее форму двояковыпуклой линзы. От хрусталика к ресничному телу тянутся тонкие упругие волокна. Они сильно натянуты и держат хрусталик в растянутом состоянии. В центре радужки имеется круглое отверстие – зрачок. Величина зрачка изменяется, отчего в глаз может попадать большее или меньшее количество света. Ткань радужной оболочки содержит особое красящее вещество – меланин. В зависимости от количества этого пигмента цвет радужки колеблется от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. При отсутствии пигмента (людей с такими глазами называют альбиносами) лучи света проникают в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок. ![]() Рис.9.1.Схема строения глаза У них недостаток пигмента в радужке часто сочетается с недостаточной пигментацией кожи и волос. Зрение у таких людей понижено. Между роговицей и радужкой, а также между радужкой и хрусталиком имеются небольшие пространства, называемые соответственно передней и задней камерами глаза. В них находится прозрачная жидкость. Она снабжает питательными веществами роговицу и хрусталик, которые лишены кровеносных сосудов. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой – стекловидным телом. - внутренняя оболочка глаза – сетчатка. Она содержит светочувствительные клетки, названные из-за формы колбочками и палочками. Нервные волокна, отходящие от этих клеток, собираются вместе и образуют зрительный нерв, который направляется в головной мозг. Слепое пятно – участок на сетчатке размером 1,5 мм, где нет светочувствительных элементов. Желтое пятно – расположено на 3-4 мм кнаружи от слепого пятна. В центре этого пятна находится центральная ямка. В ней расположены только колбочковые клетки, а к периферии от нее число колбочковых клеток уменьшается, а палочковых возрастает. На периферии сетчатки располагаются только палочковые клетки. Поступающие в глаз световые лучи, прежде чем они попадут на сетчатку, проходят через несколько преломляющих сред. К ним относятся роговица, водянистое вещество передней и задней камер глаза, хрусталик и стекловидное тело. Глаз – чрезвычайно сложная оптическая система, и для упрощения была предложена такая модель глаза, в которой одна выпуклая поверхность дает суммарный эффект преломления лучей во всей сложной оптической системе глаза. Пользуясь этой моделью, можно построить изображение видимого предмета на сетчатке (рис.9.1.). Для этого необходимо провести линии от конца рассматриваемого предмета к узловой точке и продолжить их до пересечения с сетчаткой. Изображение на сетчатке получается действительным, уменьшенным и обратным. 9.3. Аккомодация Чтобы рассматриваемый предмет был ясно виден, надо, чтобы лучи от всех его точек попали на заднюю поверхность сетчатки, т. е. были здесь сфокусированы. Когда человек смотрит вдаль, предметы, расположенные на близком расстоянии, кажутся расплывчатыми, они не в фокусе. Если глаз фиксирует близкие предметы, неясно видны отдаленные. Глаз способен приспосабливаться к четкому видению предметов, находящихся от него на различных расстояниях. Эту способность глаза называют аккомодацией. Аккомодация осуществляется путем изменения кривизны хрусталика. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи от предметов сходятся на сетчатке. Хрусталик посредством цинновой связки соединен с мышцей, располагающейся широким кольцом позади корня радужной оболочки. Благодаря деятельности этой мышцы хрусталик может менять свою форму, становиться более или менее выпуклым и соответственно сильнее или слабее преломлять попадающие в глаз лучи света. При рассматривании предметов, находящихся на далеком расстоянии, ресничная мышца расслаблена, а связки, прикрепленные преимущественно к передней и задней поверхности капсулы хрусталика, в это время натянуты, что вызывает сдавливание хрусталика спереди назад и его растягивание. Поэтому при смотрении вдаль кривизна хрусталика и, следовательно, преломляющая сила его становятся наименьшими. При приближении предмета к глазу происходит сокращение ресничной мышцы, связка расслабляется. Это прекращает сдавливание и растягивание хрусталика. Вследствие эластичности хрусталик становится более выпуклым и его преломляющая сила увеличивается. При смотрении вдаль радиус кривизны передней поверхности хрусталика 10 мм, а при наибольшем напряжении аккомодации, т. е. при четком видении максимально приближенного к глазу предмета, радиус кривизны хрусталика составляет 5,3 мм. Преломляющие свойства, или рефракция, обеспечивают фокусирование изображения на сетчатке. Для четкого изображения необходимо, чтобы параллельные лучи от изображения сходились на сетчатке. Существуют два основных вида аномалии рефракции — дальнозоркость и близорукость. ^ Дальнозоркость является следствием короткой продольной оси глаза. Она бывает связана либо с неправильной формой глаза (укороченное глазное яблоко), либо с неправильной кривизной роговицы или хрусталика. В этих случаях изображение фокусируется сзади глаза. На сетчатке при этом получается расплывчатое изображение предмета. Для перемещения изображения на сетчатку дальнозоркий глаз должен усилить свою преломляющую способность за счет увеличения кривизны хрусталика уже при рассматривании отдаленных предметов. Еще большее напряжение аккомодации потребуется для ясного видения близко расположенных предметов. Если аккомодация не в состоянии обеспечить получение на сетчатке дальнозоркого глаза четких изображений рассматриваемых предметов, необходимы очки с собирательными двояковыпуклыми стеклами, придающими проходящим через них лучам сходящееся направление. В близоруком глазу параллельные лучи, идущие от далеких предметов, пересекаются впереди сетчатки, не доходя до нее. Это может быть связано со слишком длинной продольной осью глаза или с большей, чем нормальная, преломляющей силой среды глаза (кривизна хрусталика больше). Такому глазу, преломляющая способность которого и без того велика, аккомодация помочь не в состоянии. Близорукий глаз хорошо видит только расположенные близко предметы. При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, которые превращают параллельные лучи в расходящиеся. Близорукость в большинстве случаев врожденная, однако она увеличивается в школьном возрасте от младших классов к старшим. В тяжелых случаях близорукость сопровождается изменениями сетчатки, что ведет к падению зрения и даже отслоению сетчатки. Поэтому своевременное ношение очков школьниками, страдающими близорукостью, является обязательным. Чем проявляет себя начало развития близорукости? Школьник заявляет, что он стал плохо видеть написанное на классной доске, просит пересадить его на первые парты. При чтении он приближает книгу к глазам, сильно склоняет голову во время письма, в кино или театре стремиться занять место поближе к экрану или сцене. Для близоруких характерно прищуривание глаз при рассматривании предметов. Стремление чрезмерно приблизить рассматриваемый объект к близоруким глазам, чтобы сделать его изображение на сетчатке более четким, требует значительной нагрузки на мышечный аппарат глаза. Нередко мышцы не справляются с такой напряженной работой и один глаз отклоняется в сторону от виска или носа. Возникает косоглазие. При неосложненной близорукости очки нередко восстанавливают полную остроту зрения. Прогрессирующая близорукость может привести к серьезным необратимым изменениям в глазу. Близорукость обычно развивается под влиянием длительной и беспорядочной зрительной работы на близком расстоянии. Развитию близорукости способствуют недостаточное освещение рабочего места, неправильная посадка при чтении, письме. ^ Орган слуха (рис.9.2.) человека состоит из трех частей – наружного, среднего и внутреннего уха. Наружное ухо состоит из ушной раковины и наружного слухового прохода. Наружное ухо служит для улавливания звуков. Всякий звук, идущий сбоку, поступает в одно ухо раньше на несколько долей миллисекунды, чем в другое (в зависимости от местоположения источника звука). Разница во времени прихода звуковых волн, воспринимаемых левым и правым ухом, дает возможность человеку определить направление звука. На границе между наружным и средним ухом находится барабанная перепонка. Это тонкая соединительнотканная пластинка (ее толщина около 1 мм). Барабанная перепонка расположена наклонно и начинает колебаться, когда на нее падают со стороны наружного слухового прохода звуковые колебания. Среднее ухо представлено барабанной полостью и слуховой трубой. Слуховая труба поддерживает одинаковое давление на барабанную перепонку снаружи и изнутри, что создает наиболее благоприятные условия для ее колебания. Проход воздуха в барабанную полость происходит во время акта глотания и зевания, когда открывается просвет трубы и давление в глотке и барабанной полости выравнивается. Внутри полости расположены сочленяющиеся между собой слуховые косточки – молоточек, наковальня и стремечко. Внутреннее ухо отделено от среднего перепонкой овального окна. Система слуховых косточек обеспечивает увеличение давления звуковой волны при передаче с барабанной перепонки на перепонку овального окна примерно в 30-40 раз. Это очень важно, так как даже слабые звуковые волны, падающие на барабанную перепонку, в результате оказываются способными преодолеть сопротивление мембраны овального окна и передать колебания во внутреннее ухо, трансформируясь там в колебания жидкости – эндолимфы. Внутреннее ухо расположено в височной кости и представляет собой костный лабиринт, внутри которого находится перепончатый лабиринт из соединительной ткани. Перепончатый лабиринт как бы вставлен в костный лабиринт и в общем повторяет его форму. Между костным и перепончатым лабиринтами имеется жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа. Костный лабиринт состоит из трех частей: в центре – преддверие, спереди от него находится улитка, а сзади – полукружные каналы. Костная улитка – спирально извивающийся канал, образующий два с половиной оборота вокруг стержня. Внутри среднего канала улитки находится звуковоспринимающий аппарат – кортиев орган. В кортиевом органе имеются чувствительные клетки, которые являются собственно слуховыми рецепторами. Воздушные звуковые волны, попадая в наружный слуховой проход, вызывают колебания барабанной перепонки. Далее колебания барабанной перепонки передаются через среднее ухо. Система слуховых косточек, действуя как рычаг, усиливает звуковые колебания и передает их жидкости, находящейся между костным и перепончатым лабиринтами улитки. Колебание жидкости вызывает возбуждение слуховых рецепторов нервных волокон. Возникшее возбуждение по нервным волокнам передается в слуховую зону, где осуществляется распознавание сложных звуков. Простейший анализ различения звуков начинается уже на уровне рецепторов. Смысл услышанного интерпретируется в ассоциативных корковых зонах. При длительном действии сильных звуков возбудимость звукового анализатора понижается, а при длительном пребывании в тишине возбудимость возрастает. Это адаптация. Наибольшая адаптация наблюдается в зоне более высоких звуков. ![]() Рис.9.2.Орган слуха |