|
Скачать 4.04 Mb.
|
^ ВОЛОКНА: 1) Коллагеновые волокна Под световом микроскопом - более толстые (диаметр от 3 до130 мкм), имеющие извитой (волнистый) ход, окрашивающиеся кислыми красками (эозином в красный цвет) волокна. Состоят из белка коллагена, синтезирующегося в фибробластах, фиброцитах. Строение: различают 5 уровней организации:
Под поляризационном микроскопом коллагеновые волокна (фибриллы) имеют продольную и поперечную исчерченность. Каждая молекула коллагена в параллельных рядах, как полагают, смещена относительно соседней цепи на четверть длины, что служит причиной чередования темных и светлых полос. В темных полосах под электронным микроскопом видны вторичные тонкие поперечные линии, обусловленные расположением полярных аминокислот в молекулах коллагена. В зависимости от аминокислотного состава, количества поперечных связей, присоединенных углеводов и степени гидроксилирования различают коллаген 14(или 15) различных типов (в рвст - I тип). Коллагеновые волокна не растягиваются, очень прочны на разрыв (6 кг/мм2). В воде толщина сухожилия в результате набухания увеличивается на 50%. Способность к набуханию больше выражена у молодых волокон. При термической обработке в воде коллагеновые волокна образуют клейкое вещество (феч. kolla — клей), что и дало название этим волокнам. Функция - обеспечивают механическую прочность рвст. ^ Тонкие (d=1-3 мкм), менее прочные (4-6 кг/см2), но зато очень эластичные волокна из белка эластина (синтезируются в фибробластах). Эти волокна исчерченностью не обладают, имеют прямой ход, часто разветвляются. Избирательно хорошо окрашиваются селективным красителем орсеином. Строение: снаружи имеются микрофибриллы, состоящие из микрофибриллярного белка, а внутри - белок – эластин (до 90%); эластические волокна хорошо растягиваются, после чего приобретают первоначальную форму Функция: придают рвст эластичность, способность растягиваться. ^ Считаются разновидностью (незрелые) коллагеновыхных волокон, т.е. аналогичны по химическому составу и по ультраструктуре, но в отличие от коллагеновых волокон имеют меньший диаметр и сильно разветвляясь образуют петлистую сеть (отсюда и название: "ретикулярные" - переводится как сетчатые или петлистые). В их состав входят коллаген III типа и повышенное количество углеводов. Составляющие компоненты синтезируются в фибробластах, фиброцитах. В рвст встречаются в небольшом количестве вокруг кровеносных сосудов. Хорошо окрашиваются солями серебра, поэтому имеют другое название - аргирофильные волокна. ^ Основное вещество - гомогенная, аморфная, гелеобразная, бесструктурная масса из макромолекул полисахаридов, связанных с тканевой жидкостью, в него погружены клетки и волокна. Из полисахаридов можно назвать сульфатированные гликозаминогликаны (пример: гепаринсульфат, хондроэтинсульфат; существуют в комплексе с белками, поэтому их называют протеогликанами) и несульфатированные гликозаминогликаны (пример: гиалуроновая кислота). Органическая часть основного вещества синтезируются в фибробластах, фиброцитах. Основное вещество, как каллоидная система, может переходить из состояния гель в состояние золь и наоборот, тем самым играет большое значение в регуляции обмена веществ между кровью и другими тканями. ^ РВСТ хорошо регенерирует и участвует при восполнении целостности любого поврежденного органа. При значительных повреждениях часто дефект органа восполняется соединительнотканным рубцом. Регенерация рвст происходит за счет стволовых клеток фибробластического дифферона и малодифференцированных клеток (адвентициальные клетки например) способных дифференцироваться в фибробласты. Фибробласты размножаются и начинают вырабатывать органические компоненты межклеточного вещества. ^ Общей особенностью для ПВСТ является преобладание межклеточного вещества над клеточным компонентом, а в межклеточном веществе волокна преобладают над основным аморфном веществом и располагаются по отношению друг к другу очень близко (плотно) - все эти особенности строения в сжатой форме отражены в названии данной ткани. Клетки ПВСТ представлены в подавляющем большинстве фибробластами и фиброцитами, в небольшом количестве (в основном в прослойках из рвст) встречаются макрофаги, тучные клетки, плазмоциты, малодифференцированные клетки и т.д. Межклеточное вещество состоит из плотно расположенных коллагеновых волокон, основного вещества мало. ПВСТ хорошо регенерирует за счет митоза малоспециализированных фибробластов и выработки ими межклеточного вещества (коллагеновых волокон) после дифференцировки в зрелые фибробласты. Функция ПВСТ - обеспечение механической прочности. ^ Особенности: много волокон, мало клеток, волокна имеют беспорядочное расположение Локализация: сетчатый слой дермы, надкостница, надхрящница, капсулы паренхиматозных органов. КЛЕТКИ клеток очень мало; имеются, в основном, фибробласты, могут встретиться тучные клетки, макрофаги ^ ВОЛОКНА: коллагеновые и эластические, волокон - много ОСНОВНОЕ (АМОРФНОЕ) ВЕЩЕСТВО: гликозаминогликаны и протеогликаны в небольшом количестве ^ Особенности: много волокон, мало клеток, волокна имеют упорядоченное расположение - собраны в пучки Локализация: сухожилия, связки, капсулы, фасции, фиброзные мембраны КЛЕТКИ клеток очень мало имеются, в основном, фибробласты, могут встретиться тучные клетки, макрофаги ^ ВОЛОКНА: коллагеновые и эластические; волокон - много; волокна имеют упорядоченное расположение, образуют толстые пучки ОСНОВНОЕ (АМОРФНОЕ) ВЕЩЕСТВО: гликозаминогликаны и протеогликаны в очень небольшом количестве СУХОЖИЛИЕ Состоит из толстых, плотно лежащих параллельных пучков коллагеновых волокон. Они окружены тонкими прослойками рыхлой волокнистой неоформленной соединительной ткани; самые тонкие - пучки 1 порядка, их окружает эндотеноний пучки 2 порядка окружает перитеноний, само сухожилие представляет собой пучок 3 порядка. ^ К соединительным тканям со специальными свойствами (СТСС) относятся: 1. Ретикулярная ткань. 2. Жировая ткань (белый и бурый жир). 3. Пигментная ткань. 4. Слизисто-студенистая ткань. В эмбриогенезе все соединительные ткани СТСС образуются из мезенхимы. СТСС как и все ткани внутренней среды состоят из клеток и межклеточного вещества, но клеточный компонент представлен, как правило, 1 популяцией клеток. 1. Ретикулярная ткань - составляет основу кроветворных органов, в небольшом количестве имеется вокруг кровеносных сосудов. Состоит из ретикулярных клеток и межклеточного вещества, состоящего из основного вещества и ретикулярных волокон. Ретикулярные клетки - крупные отростчатые клетки с оксифильной цитоплазмой, соединяясь друг с другом отростками образуют петлистую сеть. Переплетающиеся ретикулярные волокна также образуют сеть. Отсюда и название ткани - "ретикулярная ткань" - сетчатая ткань. Ретикулярные клетки способны к фагоцитозу, вырабатывают составные компоненты ретикулярных волокон. Ретикулярная ткань неплохо регенерирует за счет деления ретикулярных клеток и выработки ими межклеточного вещества. Функции:
2. Жировая ткань - это скопление жировых клеток. В соответствие наличию 2 типов жировых клеток различают 2 разновидности жировой ткани:
3. Пигментная ткань - скопление большого количества меланоцитов. Имеется в определенных участках кожи (вокруг сосков молочных желез), в сетчатке и радужке глаза, и т.д. Функция: защита от избытка света, УФЛ. 4. Слизисто-студенистая ткань - имеется только у эмбриона (под кожей, в пупочном канатике). В этой ткани очень мало клеток (мукоциты), преобладает межклеточное вещество, а в нем - преобладает студенистое основное вещество, богатое гиалуроновой кислотой. Такая особенность строения обуславливает высокий тургор данной ткани. Функция: механическая защита нижележащих тканей, препятствует пережатию кровеносных сосудов пуповины. ^ Скелетные ткани (textus skeletales) — это разновидность соединительных тканей с выраженной опорной, механической функцией, обусловленной наличием плотного межклеточного вещества: хрящевые, костные ткани, дентин и цемент зуба. Функции:
Классификация скелетных тканей: 1. Хрящевые ткани: а) гиалиновая (стекловидная) хрящевая ткань; б) эластическая (сетчатая) хрящевая ткань; в) волокнистая (соединительнотканная) хрящевая ткань. 2. Костные ткани: а) тонковолокнистая (пластинчатая) костная ткань; б) ретикулофиброзная (грубоволокнистая) костная ткань. ^
ХТ состоит из клеток — хондроцитов и хондробластов и большого количества межклеточного гидрофильного вещества, отличающегося упругостью и плотностью. В свежей хрящевой ткани содержится:
50—70 % сухого вещества хрящевой ткани составляет коллаген. Собственно хрящевая ткань не имеет кровеносных сосудов, а питательные вещества диффундируют из окружающей ее надхрящницы. Клетки хрящевых тканей представлены хондробластическим дифференом: 1. Стволовая клетка 2. Полустволовая клетка (прехондробласты) 3. Хондробласт 4. Хондроцит 5. Хондрокласт
^
^ содержит коллагеновые, эластические волокна и основное вещество. Основное вещество состоит из тканевой жидкости и органических веществ: - ГАГ (хондроэтинсульфаты, кератосульфаты, гиалуроновая кислота); - 10% - ПГ (10-20% - белок + 80-90 % ГАГ); - липиды. Межклеточное вещество обладает высокой гидрофильностью, содержание воды доходит до 75% массы хряща, это обуславливает высокую плотность и тургор хряща. Хрящевые ткани в глубоких слоях не имеют кровеносных сосудов, питание осуществляется диффузно за счет сосудов надхрящницы. Надхрящница - это слой соединительной ткани, покрывающий поверхность хряща. В надхрящнице выделяют наружный фиброзный (из плотной неоформленной СТ с большим количеством кровеносных сосудов) слой и внутренний клеточный слой, содержащее большое количество стволовых, полустволовых клеток и хондробластов. ^ Покрывает все суставные поверхности костей, содержится в грудинных концах ребер, в воздухоносных путях. Большая часть встречающейся в организме у человека гиалиновой хрящевой ткани покрыта надхрящницей и представляет собой вместе с пластинкой хрящевой ткани анатомические образования — хрящи.
Питание суставного хряща лишь частично осуществляется из сосудов глубокой зоны, а в основном за счет синовиальной жидкости полости сустава. ^ Имеется в ушной раковине, надгортаннике, рожковидных и клиновидных хрящах гортани. Особенности:
Волокнистый хрящ Расположен в местах прикрепления сухожилий к костям и хрящам, в симфизе и межпозвоночных дисках. По строению занимает промежуточное положение между плотной оформленной соединительной и хрящевой тканью. Отличие от других хрящей: в межклеточном веществе гораздо больше коллагеновых волокон, причем волокна расположены ориентированно - образуют толстые пучки, хорошо видимые под микроскопом, постепенно разрыхляющиеся и переходящие в гиалиновый хрящ. Хондроциты чаще лежат по одиночке вдоль волокон, не образуя изогенные группы. Эмбриональный хондрогистогенез Источником развития хрящевых тканей является мезенхима. Стадии:
В некоторых участках тела зародыша, где образуется хрящ, клетки мезенхимы теряют свои отростки, усиленно размножаются и, плотно прилегая друг к другу, создают определенное напряжение — тургор. Находящиеся составе островка стволовые клетки дифференцируются в хондробласты. Эти клетки являются главным строительным материалом хрящевой ткани. В их цитоплазме сначала увеличивается количество свободных рибосом, затем появляются участки гранулярной эндоплазматической сети.
Клетки центрального участка (первичные хондроциты) округляются, увеличиваются в размере, в их цитоплазме развивается гранулярная эндоплазматическая сеть, с участием которой происходят синтез и секреция фибриллярных белков (коллагена). Образующееся таким образом межклеточное вещество отличается оксифилией.
Хондроциты приобретают способность синтезировать гликозаминогликаны, кроме упомянутых ранее фибриллярных белков, главным образом сульфатированные (хондроитинсульфаты), связанные с неколлагеновыми белками (протеогликаны). ^ Костные ткани (textus ossei) — это специализированный тип соединительной ткани с высокой минерализацией межклеточного органического вещества, содержащего около 70 % неорганических соединений, главным образом фосфатов кальция. Функции:
Межклеточное вещество костной ткани состоит:
Соотношение органическрой и неорганической части межклеточного вещества зависит от возраста: у детей органической части несколько больше 30%, а неорганической части меньше 70%, поэтому у них кости менее прочные, но зато более гибкие (не ломкие); в пожилом возрасте, наоборот, доля неорганической части увеличивается, а органической части уменьшается, поэтому кости становятся более твердыми, но более ломкими. В отличие от хрящевых тканей в костной ткани кровеносных сосудов больше: имеются как в надкостнице, так и в глубоких слоях кости. ^ К клеткам костной ткани относятся остеогенные стволовые и полустволовые клетки, остеобласты, остеоциты и остеокласты.
На остеобласты и остеоциты стимулирующее влияние оказывает гормон щитовидной железы кальцитонин - усиливается синтез органической части межклеточного вещества и усиливается отложение кальция, при этом концентрация кальция в крови снижается.
В цитоплазме остеокласта выделяют зоны:
Ретикулофиброзная (грубоволокнисая) костная ткань Имеется в черепных швах, местах прикрепления сухожилий к костям, в эмбриональном периоде вначале на месте хрящевого макета будущей кости формируется ретикулофиброзная кость, которая потом становится тонковолокнистой. Грубоволокнистая (ретикулофиброзная) кость образуется ткаже при сращении костей после перелома, т.е. в костной мозоле. Главное отличие ретикулофиброзной костной ткани - в расположении оссеиновых волокон в межклеточном веществе - волокна располагаются произвольно, неупорядочонно, склеиваются оссеомукоидом и на них откладываются соли кальция. Остеобласты и остеоциты также располагаются в лакунах. Ретикулофиброзная кость менее прочная. ^ В тонковолокнистой костной ткани оссеиновые волокна располагаются в одной плоскости параллельно друг другу и склеиваются оссеомукоидом и на них откладываются соли кальция - т.е. формируют пластинки, поэтому тонковолокнистая костная ткань по другому называется пластинчатой костной тканью. Направление оссеиновых волокон в 2-х соседних пластинках взаимоперпендикулярны, что придает особую прочность этой ткани. Между костными пластинками в полостях-лакунах лежат остеоциты. Если рассмотреть трубчатую кость как орган, то в ней различают (диафиз): 1) Надкостница (периост). В ней различают два слоя:
2) Наружные общие (генеральные) пластинки - костные пластинки окружают кость по всему периметру, а между ними - остеоциты. 3) Слой остеонов. Остеон (Гаверсова система) - это система из 5-20 цилиндров из костных пластинок, концентрически вставленных друг в друга. В центре остеона проходит кровеносный капилляр. Между костными пластинками-цилиндрами в лакунах лежат остеоциты. Промежутки между соседними остеонами заполнены вставочными пластинками - это остатки разрушающихся старых остеонов, которые были здесь до этих остеонов. 4) Внутренние общие (генеральные) пластинки (аналогичны с наружными). 5) Эндоост - по строению аналогичен с периостом. Регенерация и рост кости в толщину осуществляется за счет периоста и эндооста. Все трубчатые кости, а также большинство плоских костей гистологически являются тонковолокнистой костью. ^ Может протекать 2 способами: I. Прямой остеогенез - характерен для плоских костей, в том числе костей черепа и зубочелюстного аппарата.
II. Непрямой остеогенез или развитие кости на месте хряща - характерно для трубчатых костей.
^ Мышечными тканями (textus muscularis) называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.). ^ : клетки, волокна. Основные морфологические признаки:
Классификация
Мышечная ткань мезенхимного происхождения Представлена главным образом в стенках кровеносных сосудов и многих трубчатых внутренних органов, а также образует отдельные мелкие мышцы (цилиарные). Клетка: Гладкий миоцит — веретеновидная клетка длиной 20—500 мкм, шириной 5—8 мкм. Ядро палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены около полюсов ядра (в эндоплазме). Аппарат Гольджи и гранулярная эндоплазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно. В цитоплазме содержит тонкие (5-8 нм) и толстые (13-18 нм) миофиламенты. Тонкие миофиламенты, или Актиновые, находятся в тесном взаимодействии с толстыми (Миозиновыми) миофиламентами. Причем тонких миофиламентов примерно в 15 раз больше, чем толстых. ^ Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с их секреторными клетками. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. ^ Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы — суживающую и расширяющую зрачок. ^ ГМТ в эмбриональном периоде развивается из мезенхимы. Вначале мезенхимные клетки имеют звездчатую, отросчатую форму, а при дифференцировке в ГМ-клетки приобретают веретеновидную, овальную форму – миобласты (способны к размножению); в цитоплазме накапливаются органоиды спецназначения - миофибриллы из актина и миозина. ^ 1. Митоз миоцитов после дедифференцировки: миоциты утрачивают сократительные белки, исчезают митохондрии и превращаются в миобласты. Миобласты начинают размножаться, а потом вновь дифференцируются в зрелые леомиоциты. 2. Возможно образование новых ГМ-клеток из малодифференцированных стволовых клеток фибробластического дифферона рыхлой с.д.т. ^ является древнейшей гистологической системой. В эмбриогенезе ПП МТ соматического типа развивается из миотомов. Структурно-функциональной единицей является мышечное волокно, состоящее из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной (длина – саниметры, при толщине 50 — 100 мкм), мион = мыш. волокно + капилляры + нервные окончания. Части:
Мышечное волокно включает большое число ядер, саркоплазму. В саркоплазме находятся: - органоиды спецназначения - миофибриллы - митохондрии - Т-система (Т-трубочки, Л-трубочки, цистерны;) - включенияя (особенно гликоген). Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой. ^ Миосимпласт имеет множество продолговатых ядер, расположенных непосредственно под сарколеммой. Их количество в одном симпласте может достигать нескольких десятков тысяч. У полюсов ядер располагаются органеллы общего значения — аппарат Гольджи и небольшие фрагменты гранулярной эндоплазматической сети. Миофибриллы заполняют основную часть миосимпласта и расположены продольно. Саркомер — структурная единица миофибриллы, это участок между двумя соседними телофрагмами.. Каждая миофибрилла имеет поперечные темные диски (анизотропные, полоска А, представлена толстыми миозиновыми нитями) и светлые диски (изотропные, полоски I, представлена тонкими актиновыми нитями), имеющие неодинаковое лучепреломление. Каждая миофибрилла окружена продольно расположенными и анастомозирующи- ми между собой петлями агранулярной эндоплазматической сети — саркоплазматической сети. Соседние саркомеры имеют общую пограничную структуру — Z-линию (по центру светлых И-дисков (телофрагма). По центру темных А-дисков проходит светлая зона (полоса Н), в середине которой проходит мсзофрагма (линия М). Саркомер = ½ полоски I (актин.) – полоска А (миозин.) – ½ полоски I (актин.) ![]() 1 — плазмолемма; 2 — саркоплазма; 3 — ядра миосимпласта; 4 — миофибриллы; 5 — анизотропный диск (полоска А); 6 — изотропный диск (полоска I); 7 — тслофрагма (линия Z); 8 — светлая зона (полоса Н), в середине которой проходит мсзофрагма (линия М): 9 — саркомер; 10 — миосател- литоцит; II — сухожильные волокна; 12 — базальная мембрана (по А.Н.Студитскому). Кроме сократительных белков актина и миозина в саркоплазме имеются еще вспомогательные белки - Тропонин и тропомиозин - они участвуют при обеспечении (поставке) сократительных белков ионами кальция, являющихся катализатором при взаимодействии актина и миозина. При сокращении между актиновыми и миозиновыми протофибриллами при наличии катализатора - ионов кальция образуются мостики или акто-миозиновые комплексы и это обеспечивает скольжение нитей навстречу друг к другу и укорочение саркомеров. Канальцы саркоплазматического ретикулума располагаются в продольном направлении и образуют L-трубочки (longentidunalis = продольные); они соединяются трубочками идущими в поперечном направлении в мышечном волокне - Т-трубочками (transversus=поперечно). L- и Т-трубочки соединяются с цистернами - это своеобразные емкости для ионов кальция. В стенках цистерн имеются кальциевые насосы, откачивающие ионы Са+2 из саркоплазмы в цистерны. Нервный импульс в моторных бляшках переходит на сарколемму мышечного волокна, дальше по Т-трубочкам волна деполяризации проникает внутрь волокна, распространяется по L-трубочкам и наконец волна деполяризации проходит по стенке цистерн. В момент прохождения волны деполяризации по мембране цистерны у последней повышается проницаемость для ионов Са+2, и кальций выбрасывается в саркоплазму и подхватывается вспомогательными белками тропонином и тропомиозином и подносится к акто-миозиновому комплексу и при наличии АТФ происходит сокращение саркомера. Кальциевый насос быстро откачивает кальций обратно в цистерны - актомиозиновый комплекс распадается, поэтому происходит расслабление мышцы. Поступление нового импульса приводит к повторению всего цикла. По строению и функциональным особенностям выделяют мышечные волокна I типа (красные м.в.), которые содержат много митохондрий, миоглобина (придает красный цвет), высокую активность фермента сукцинатдегидрогеназы, но мало миофибрилл. Красные м.в. добывают энергию для сокращения путем аэробного оксиления гликогена, т.е. нуждаются в дыхании. ^ содержат больше миофибрилл и относительно больше гликогена, зато меньше митохондрий и у них низка активность сукцинатдегидрогеназы. Белые м.в. энергию для сокращений получают путем анаэробного окисления гликогена, т.е. в дыхании не нуждаются. Особо следует отметить так называемые клетки миосателлитоциты (МСЦ). МСЦ были обнаружены с помощью электронного микроскопа в 1961 году. С тех пор гистогенез и регенерация скелетной МТ рассматривается в связи с этим и МСЦ. Особенностью локализации МСЦ является то, что они располагаются между базальной пластинкой и сарколеммой м. волокна. В обычных условиях эти клетки имеют неольшие размеры (20-30 мкм в длину), палочковидное ядро с большим содержанием гетерохроматина, узкую цитоплазму окружающее ядро; органеллы представлены очень бедно. Актиновые и миозиновые протофибриллы в МСЦ не обнаруживаются. Физиологическая и репаративная регенерация ПП МТ соматического типа осуществляется за счет малодифференцированных элементов - МСЦ. При травме или большой физической нагрузке клетки МСЦ постепенно выходят из состава м.волокна, начинают делиться митозом и формируют популяцию миобластов. В последующем миобласты выстраиваются в "цепочку" и начинают сливаясь образовывать миотубулы - симпласт. Миотубулы в цитоплазме накапливают миофибриллы, митохондрии и превращаются в новые мыщечные волокна, которые включают в свой состав и симпластический компонент и резервные клетки - МСЦ. Возрастные изменения поперечно-полосатой МТ соматического типа сопровождаются атрофией м.в., т.е. уменьшением количества и толщины миофибрилл, накоплением липофусцина и жировых включений в саркоплазме, значительным утолщением базальной мембраны вокруг сарколеммы. Гистогенез. Источником развития элементов скелетной (соматической) оперечнополосатой мышечной ткани (textus muscularis striatus sceletalis) являются клетки миотомов — миобласты. Одни из них дифференцируются на месте и участвуют в образовании так называемых аутохтонных мышц. Другие клетки мигрируют из миотомов в мезенхиму. Они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные симпласты — мышечные трубочки (миотубы). В них происходит дифференцировка специальных органелл — миофибрилл. В это время в миотубах отмечается хорошо развитая гранулярная эндоплазматическая сеть. Миофибриллы сначала располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра, напротив, из центральных отделов смещаются к периферии. Клеточные центры и микротрубочки при этом полностью исчезают. Гранулярная эндоплазматическая сеть редуцируется в значительной степени. Такие дефинитивные структуры называют миосимпластами. Клетки другой линии остаются самостоятельными и дифференцируются в миосателлитоциты (миосателлиты). Эти клетки располагаются на поверхности миосимпластов. ^ - развивается из висцерального листка спланхнатомов, называемой миоэпикардиальной пластинкой. В гистогенезе ПП МТ сердечного типа различают следующие стадии: 1. Стадия кардиомиобластов. 2. Стадия кардиопромиоцитов. 3. Стадия кардиомиоцитов. Морфофункциональной единицей ПП МТ сердечного типа является кардиомиоцит (КМЦ). КМЦ контактируя друг с другом конец в конец формируют функциональные мышечные волокна. При этом сами КМЦ отграничены друг от друга вставочными дисками, как особыми межклеточными контактами. Морфологически КМЦ - это высокоспециализированная клетка с локализованным в центре одним ядром, миофибриллы занимают основную часть цитоплазмы, между ними большое количество митохондрий; имеется ЭПС и включения гликогена. Сарколемма (соответствует цитолемме) состоит из плазмолеммы и базальной мембраны, менее выраженной по сравнению с ПП МТ скелетного типа. В отличие от скелетной МТ сердечная МТ камбиальных элементов не имеет. В гистогенезе кардиомиобласты способны митотически делиться и в то же время синтезировать миофибриллярные белки. Рассматривая особенности развития КМЦ, следует указать, что в раннем детстве эти клетки после разборки (т. е. исчезновения) могут вступить в цикл пролиферации с последующей сборкой акто-миозиновых структур. Это является особенностью развития сердечных мышечных клеток. Однако в последующем способность к митотическому делению у КМЦ резко падает и у взрослых практически равна нулю. Кроме того в гистогенезе с возрастом в КМЦ происходит накопление включений липофусцина. Размеры КМЦ уменьшаются. Различают 3 разновидности КМЦ: 1. Сократительные КМЦ (типичные) - описание смотри выше. 2. Атипичные (проводящие) КМЦ - образуют проводящую систему сердца. 3. Секреторные КМЦ. Атипичные (проводящие КМЦ - для них характерно: - слабо развит миофибриллярный аппарат; - мало митохондрий; - содержит больше саркоплазмы с большим количеством включений гликогена. Атипичные КМЦ обеспечивают автоматию сердца, так как часть их, расположенные в синусном узле сердца Р-клетки или водители ритма, способны вырабатывать ритмичные нервные импульсы, вызывающие сокращение типичных КМЦ; поэтому даже после перерезки нервов подходящих к сердцу, миокард продолжает сокращаться своим ритмом. Другая часть атипичных КМЦ проводят нервные импульсы от водителей ритма и импульсы от симпатических и парасимпатических нервных волокон к сократительным КМЦ. Секреторные КМЦ - располагаются в предсердиях; под электронным микроскопом в цитоплазме имеют ЭПС гранулярный, пластинчатый комплекс и секреторные гранулы, в которых содержится натрийуретический фактор или атриопептин – гормон, регулирующий артериальное давление, процесс мочеобразования. Кроме того секреторные КМЦ вырабатывают гликопротеины, которые соединяясь с липопротеинами крови препятствуют образованию тромбов в кровеносных сосудах. ^ Репаративная регенерация (после повреждений) - очень плохо выражена, поэтому после повреждений (пр.: инфаркт) сердечная МТ замещается соединительнотканным рубцом. Физиологическая регенерация (восполнение естественного износа) осуществляется путем внутриклеточной регенерации - т.е. КМЦ не способны делиться, но постоянно обновляют свои изношенные органоиды, в первую очередь миофибриллы и митохондрии. ^ Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражении, возбуждения, выработки импульса и передачи его. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой. ^
^ ![]() I - образование нервной бороздки, ее погружение, II - образование нервной трубки, нервного гребня, ^ 1 - нервная бороздка, 2 - нервный гребень, 3 - нервная трубка, 4 - эктодерма Нервная ткань развивается из дорсальной эктодермы. Процесс формирования нервной трубки называется нейруляцией. На 18 день эктодерма по средней линии спины дифференцируется, образуется продольное утолщение, называемое нервной пластинкой. Вскоре эта пластинка прогибается по центральной линии и превращается в желобок, ограниченный по краям нервными валиками. В дальнейшем желобок смыкается в нервную трубку и обособляется от кожной эктодермы. В месте отделения нервной трубки от эктодермы выделяются два тяжа клеток, называемых нервными гребнями (ганглиозные пластинки). Передняя часть нервной трубки начинает утолщаться и превращается в головной мозг. Нервная трубка и ганглиозная пластинка состоят из малодифференцированных клеток - медулобластов, которые интенсивно делятся митозом. Медулобласты очень рано начинают дифференцироваться и дают начало 2 дифферонам: нейробластический дифферон (нейробласты молодые нейроциты зрелые нейроциты); спонгиобластический дифферон (спонгиобласты глиобласты глиоциты). Из нервной трубки в дальнейшем формируются нейроны и макроглия центральной нервной системы. ^ дает начало спинальным ганглиям и узлам вегетативной НС, клеткам мягкой мозговой и паутинной оболочек мозга и некоторым видам глии: нейролеммоцитам (шванновским клеткам), клеткам-сателлитам ганглиев, клеткам мозгового вещества надпочечников, меланоцитам кожи и др. Гистогенез Размножение нервных клеток происходит главным образом в период эмбрионального развития. Вначале нервная трубка состоит из 1 слоя клеток, которые размножаются митозом, что приводит к увеличению количества слоев. Первичная нервная трубка в спинальном отделе рано делится на три слоя: 1) самый внутренний эпендимный слой, содержащий зачатковые клетки – эпендимоциты (выстилают спинно-мозговой канал, мозговые желудочки). ^
Способность к делению не утрачивают полностью и зрелые астроциты, и олигодендроциты. Новообразование нейронов прекращается в раннем постнатальном периоде. Из клеток плащевого слоя образуются серое вещество спинного и часть серого вещества головного мозга. 3) наружный слой – краевая вуаль, который в зрелом мозге содержит миелиновые волокна – отростки 2-х предыдущих слоев и макроглию и дает начало белому веществу. Нейроны Нейроны, или нейроциты — специализированные клетки нервной системы, ответственные за рецепцию, обработку (процессинг) стимулов, проведение импульса и влияние на другие нейроны, мышечные или секреторные клетки. Нейроны выделяют нейромедиаторы и другие вещества, передающие информацию. Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система. Нейроны отличаются большим разнообразием форм и размеров. Диаметр тел клеток-зерен коры мозжечка 4—6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга — 130—150 мкм. Обычно нейроны состоят из тела (перикариона) и отростков: аксона и различного числа ветвящихся дендритов. Отростки нейронов
Виды нейронов По количеству отростков различают:
По функции нейроциты делятся:
Ядро нейроцита - обычно крупное, круглое, содержит сильно деконденсированный хроматин. Исключение составляют нейроны некоторых ганглиев вегетативной нервной системы; например, в предстательной железе и шейке матки иногда встречаются нейроны, содержащие до 15 ядер. В ядре имеется 1, а иногда 2—3 крупных ядрышка. Усиление функциональной активности нейронов обычно сопровождается увеличением объема (и количества) ядрышек. В цитоплазме имеется хорошо выраженная гранулярная ЭПС, рибосомы, пластинчатый комплекс и митохондрии. ^
Включения: гликоген, ферменты, пигменты. Нейроглия Глиальные клетки обеспечивают деятельность нейронов, играя вспомогательную роль. Выполняет функции:
Макроглия (глиоциты) Макроглия развивается из глиобластов нервной трубки. Глиоциты: 1. Эпиндимоциты. 2. Астроциты: а) протоплазматические астроциты (синоним: коротколучистые астроциты); б) волокнистые астроциты (синоним: длиннолучистые астроциты). 3. Олигодендроциты: Эпиндимоциты Выстилают спинно-мозговой канал, мозговые желудочки. По строению напоминают эпителий. Клетки имеют низкопризматическую форму, плотно прилегают друг к другу, образуя сплошной пласт. На апикальной поверхности могут иметь мерцательные реснички, вызывающие ток цереброспинальной жидкости. Другой конец клеток продолжается в длинный отросток, пронизывающий всю толщу головного, спинного мозга. Функции: разграничительная (пограничная мембрана: ликвор мозговая ткань), опорная, секреторная - участвует в образовании и регуляции состава ликвора. Астроциты Отросчатые ("лучистые") клетки, образуют остов спинного и головного мозга. 1) протоплазматические астроциты - клетки с короткими, но толстыми отростками, содержатся в сером веществе. ^ 2) волокнистые астроциты - клетки с тонкими длинными отростками, находятся в белом веществе ЦНС. Функции: опорная, участие в процессах обмена. Олигодендроциты Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов (тел нервных клеток). В белом веществе их отростки образуют миелиновыи слой в миелиновых нервных волокнах.
Функции: трофическая, участие в обмене веществ, участие в процессах регенерации, участие в образовании оболочека вокруг нервных отростков, участие в передаче импульса. Микроглия Микроглия - это макрофаги мозга, они обеспечивают иммунологические процессы в ЦНС, фагоцитоз, могут оказывать влияние на функции нейронов. Виды: - типичная (ветвистая, покоящаяся), - амебоидная, - реактивная. (см. учебник стр. 283-4) Источник развития: в эмбриональном периоде - из мезенхимы; в последующем могут образоваться из клеток крови моноцитарного ряда, т. е. из костного мозга. Функция — защита от инфекции и повреждения и удаление продуктов разрушения нервной ткани. ^ Состоят из отростка нервной клетки, покрытого оболочкой, которая формируется олигодендроцитами. Отросток нервной клетки (аксон или дендрит) в составе нервного волокна называется осевым цилиндром. Виды:
Безмиелиновые нервные волокна Находятся преимущественно в составе вегетативной нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько (10—20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж неиролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр. Оболочки нейролеммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых волокон в этих условиях выявляется как однородный тяж цитоплазмы, «одевающий» осевые цилиндры. Нервный импульс по безмиелиновому нервному волокну проводится как волна деполяризации цитолеммы осевого цилиндра со скоростью 1-2 м/сек. Миелиновые нервные волокна Встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Они также состоят из осевого цилиндра, «одетого» оболочкой из нейролеммоцитов (шванновских клеток), но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки:
Миелиновый слой содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. В миелиновом слое периодически встречаются узкие светлые линии — насечки миелина, или насечки Шмидта — Лантермана. Через определенные интервалы видны участки волокна, лишенные миелинового слоя, — узловатые перехваты, или перехваты Ранвье, т.е. границы между соседними леммоцитами. Отрезок волокна между смежными перехватами называется межузловым сегментом. В процессе развития аксон погружается в желобок на поверхности нейролеммоцита. Края желобка смыкаются. При этом образуется двойная складка плазмолеммы нейролеммоцита — мезаксон. Мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону — миелиновый слой. Цитоплазма с ядрами отодвигается на периферию – образуется наружная оболочка или светлая Шванновская оболочка (при окраске осмиевой кислотой). Осевой цилиндр состоит из нейроплазмы, продольных параллельных нейрофиламентов, митохондрий. С поверхности покрыт мембраной – аксолеммой, обеспечивающей проведение нервного импульса. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Нервный импульс в миелиновом нервном волокне проводится как волна деполяризации цитолеммы осевого цилиндра, "прыгающая" (сальтирующая) от перехвата к следующему перехвату со скоростью до 120 м/сек. В случае повреждения только отростка нейроцита регенерация возможна и протекает успешно при наличии определенных для этого условий. При этом, дистальнее места повреждения осевой цилиндр нервного волокна подвергается деструкции и рассасывается, но леммоциты при этом остаются жизнеспособными. Свободный конец осевого цилиндра выше места повреждения утолщается - образуется "колба роста", и начинает расти со скоростью 1 мм/день вдоль оставшихся в живых леммоцитов поврежденного нервного волокна, т.е. эти леммоциты играют роль "проводника" для растущего осевого цилиндра. При благоприятных условиях растущий осевой цилиндр достигает бывшего рецепторного или эффекторного концевого аппарата и формирует новый концевой аппарат. Нервные окончания Нервные волокна заканчиваются концевыми аппаратами — нервными окончаниями. Различают 3 группы нервных окончаний:
Эффекторные нервные окончания Эффекторные нервные окончания бывают двух типов:
Двигательные нервные окончания — это концевые аппараты аксонов двигательных клеток соматической, или вегетативной, нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Двигательные окончания в поперечнополосатых мышцах называются нервно-мышечными окончаниями или моторные бляжки. Нервно-мышечное окончание состоит из концевого ветвления осевого цилиндра нервного волокна и специализированного участка мышечного волокна – аксо-мышечного синуса. Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновый слой и погружается в него, вовлекая за собой его плазмолемму и базальную мембрану. Нейролеммоциты, покрывающие нервные терминали, кроме их поверхности, непосредственно контактирующей с мышечным волокном, превращаются в специализированные уплощенные тела глиальных клеток. Их базальная мембрана продолжается в базальную мембрану мышечного волокна. Соединительнотканные элементы при этом переходят в наружный слой оболочки мышечного волокна. Плазмолеммы терминальных ветвей аксона и мышечного волокна разделены синоптической щелью шириной около 50 нм. Синаптическая щель заполнена аморфным веществом, богатым гликопротеидами. Саркоплазма с митохондриями и ядрами в совокупности образует постсинаптическую часть синапса. Секреторные нервные окончания (нейрожелезистые) Они представляют собой концевые утолщения терминален или утолщения по ходу нервного волокна, содержащие пресинаптические пузырьки, главным образом холинергические (содержат ацетилхолин). Рецепторные (чувствительные) нервные окончания Эти нервные окончания — рецепторы, концевые аппараты дендритов чувствительных нейронов, — рассеяны по всему организму и воспринимают различные раздражения как из внешней среды, так и от внутренних органов. Соответственно выделяют две большие группы рецепторов: экстерорецепторы и интерорецепторы. В зависимости от восприятия раздражения: механорецепторы, хеморецепторы, барорецепторы, терморецепторы. По особенностям строения чувствительные окончания подразделяют на
Инкапсулированные рецепторы соединительной ткани при всем их разнообразии всегда состоят из ветвления осевого цилиндра и глиальных клеток. Снаружи такие рецепторы покрыты соединительнотканной капсулой. Примером подобных окончаний могут служить весьма распространенные у человека пластинчатые тельца (тельца Фатера — Пачини). В центре такого тельца располагается внутренняя луковица, или колба (bulbus interims), образованная видоизмененными леммоцитами (рис. 150). Миелинивое чувствительное нервное волокно теряет около пластинчатого тельца миелиновый слой, проникает во внутреннюю луковицу и разветвляется. Снаружи тельце окружено слоистой капсулой, состоящей из с/т пластинок, соединенных коллагеновыми волокнами. Пластинчатые тельца воспринимают давление и вибрацию. Они присутствуют в глубоких слоях дермы (особенно в коже пальцев), в брыжейке и внутренних органах. К чувствительным инкапсулированным окончаниям относятся осязательные тельца — тельца Мейснера. Эти структуры овоидной формы. Они располагаются в верхушках соединительнотканных сосочков кожи. Осязательные тельца состоят из видоизмененных нейролеммоцитов (олигодендроцитов) — тактильных клеток, расположенных перпендикулярно длинной оси тельца. Тельце окружено тонкой капсулой. Коллагеновые микрофибриллы и волокна связывают тактильные клетки с капсулой, а капсулу с базальным слоем эпидермиса, так что любое смещение эпидермиса передается на осязательное тельце. К инкапсулированным окончаниям относятся генитальные тельца (в половых органах) и концевые колбы Краузе. К инкапсулированным нервным окончаниям относятся также рецепторы мышц и сухожилий: нервно-мышечные веретена и нервно-сухожильные веретена. Нервно-мышечные веретена являются сенсорными органами в скелетных мышцах, которые функционируют как рецептор на растяжение. Веретено состоит из нескольких исчерченных мышечных волокон, заключенных в растяжимую соединительнотканную капсулу, — интрафузальных волокон. Остальные волокна мышцы, лежащие за пределами капсулы, называются экстрафузальными. Интрафузальные волокна имеют актиновые и миозиновые миофиламенты только на концах, которые и сокращаются. Рецепторной частью интрафузального мышечного волокна является центральная, несокращающаяся часть. Различают и нтрафузальные волокна двух типов: волокна с ядерной сумкой (центральной расширенной части они содержат много ядер) и волокна с ядерной цепочкой (ядра в них расположены цепочкой по всей рецепторной области). Межнейрональные синапсы Синапс - это место передачи нервных импульсов с одной нервной клетки на другую нервную или ненервную клетку. В зависимости от локализации окончаний терминальных веточек аксона первого нейрона различают:
По конечному эффекту синапсы делятся: - тормозные; - возбуждающие.
Терминаль аксона представляет собой пресинаптическую часть, а область второго нейрона, или другой иннервируемой клетки, с которой она контактирует, — постсинаптическую часть. В пресинаптической части находятся синаптические пузырьки, многочисленные митохондрии и отдельные нейрофиламенты. Синаптические пузырьки содержат медиаторы: ацетилхолин, норадреналин, дофамин, серотонин, глицин, гамма-аминомасляная кислота, серотонин, гистамин, глютамат. Область синаптического контакта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны. ^ — это мембрана клетки, передающей импульс (аксолемма). В этой области локализованы кальциевые каналы, способствующие слиянию синаптических пузырьков с пресинаптической мембраной и выделению медиатора в синаптическую щель. ^ между пре- и постсинаптической мембранами имеет ширину 20—30 нм. Мембраны прочно прикреплены друг к другу в синаптической области филаментами, пересекающими синаптическую щель. ^ — это участок плазмолеммы клетки, воспринимающий медиаторы генерирующий импульс. Она снабжена рецептор- ными зонами для восприятия соответствующего нейромедиатора. |