|
Скачать 265.91 Kb.
|
Занятие №14. Тема: Биохимия полости рта. Биохимия костной и зубной тканей. Актуальность темы. Врач должен знать химический состав костной ткани (минеральные и органические компоненты костной ткани), механизмы её минерализации, роль гормонов и витамина Д3 в регуляции обменных процессов в костях. Врач – стоматолог обязан знать химический состав (минеральные элементы), теории минерализации зуба, механизмы возникновение зубного налета, камня, биохимические аспекты развития кариеса и парадонтоза. Вопросы для самоконтроля. 1. Химический состав костной ткани. Минеральные и органические компоненты костной ткани. 2. Механизм минерализации костной ткани. 3. Регуляция обмена костной ткани. Роль гормонов и витаминов. 4. Эмаль. Химический состав. Минеральные компоненты: кристаллы гидроксиапатита, фторапатита и др. макро – и микроэлементы. Флюороз. 5. Дентин, цемент, пульпа. Химически состав. Биологическая роль. 6. Поверхностные образования на зубах. Зубной налет. Зубной камень. 7. Кариес. Кислотная теория возникновения. Биохимические изменения при кариесе зуба. ^ Костная ткань - это особый вид соединительной ткани, включающий компоненты органической и неорганической природы, выполняющий функцию депо Са (99%). Костная ткань имеет особенности строения, которые не встречаются в других видах соединительной ткани. Основные особенности кости - твердость, упругость, механическая прочность. Состоит из клеток и костного матрикса (межклеточного вещества). Костный матрикс составляет 50% сухого "веса и состоит из неорганической (50%) и органической (25%) частей и Н2О (25%). ^ в значительном количестве содержит Са (25%) и Р (50%), образующие кристаллы гидроксиапатита, а также другие компоненты: бикарбонаты, цитраты, соли Mg2+, K+, Na+ и др. ^ образована коллагеном, неколлагеновыми белками, гликозаминогликанами (хондроитинсульфат, кератан-сульфат). Собственно костные неколлагеновые белки представлены сиалопротеинами, протеогликанами, фосфопротеинами и сложным белком, содержащим углеводный компонент и ортофосфат. От правильного набора матриксных белков, особенностей строения, а также специфического аминокислотного состава зависит отложение гидроксиапатита, создавая необходимую концентрацию Са для процесса минерализации. Сиалопротеины имеют молекулярную массу 70000. 50% - это углеводы, 12% -сиаловая кислота. Большинство углеводов - это олигосахариды (фруктоза, галактоза, глюкоза, манноза, пентоза, галактозамин). До 30% серина и другие аминокислоты: аспарагиновая и глутаминовая, ковалентно связанные с фосфатом. Присутствие этого белка обеспечивает: - клеточное прикрепление; - связывание катионов. Неколлагеновых белков в костной ткани около 200, они составляют 3-5% от ее массы или 15-17% от массы ее деминерализованного и высушенного внеклеточного органического матрикса. Все они участвуют в процессах обеспечения гистогенеза, самоподдержания, иммунологические свойства на протяжении всей жизни и репарации костной ткани. ^ Остеонектин - молекулярная масса 32 кДа. Он имеет кальций-связывающие участки, образованные сиаловыми кислотами и ортофосфатом, придающие возможность взаимодействия с коллагеном и избирательно с гидроксиапатитом. Он поддерживает в присутствии коллагена осаждение Са и РО4 3-. Остеопонтин - молярная масса 41,5 кДа, богат дикарбоновыми аминокислотами и фосфосерином, 30 остатков моносахаридов, 10 остатков сиаловых кислот. Он способен фиксировать остеобласты в участках физиологического и репаративного костеобразования. Его синтез резко возрастает во время трансформации вирусов. Остеокалъцин - это гла-содержащий протеин. Дело в том, что костная, как и другие ткани, содержит белки, которые подвергаются посттрансляционной модификации с помощью витамин К-зависимых ферментов, в результате чего образуются остатки у-карбоксилглутаминовой кислоты (gla). Модифицированная таким образом аминокислота придает белкам способность связывать Са2+ с помощью расположенных по соседству карбоксильных групп. Молекула этого белка состоит из 49 аминокислотных остатков (в 17-ом, 21-ом, 24-ом положениях - остатки у-карбоксилглутаминовой кислоты). Роль их - связывать кристаллы гидроксиапатита и тем самым способствовать их накоплению в ткани. Синтез остеокальцина зависит не только от витамина К, но и D, что подчеркивает его связь с процессом минерализации. gla-протеин-матрикса (молекулярная масса - 15000 ). Он сохраняется в матриксе кости после деминерализации, в отличие от остеокальцина, который легко экстрагируется в этот период. Остатков у-карбоксилглутаминовой кислоты до шести. Он связывает минеральные кристаллы и легко растворимый в воде костный морфогенетический белок, доставляя его к клеткам-мишеням. Протеин-S - синтезируется в печени, участие в метаболизме костной ткани доказывается фактом изменения скелета у пациентов с дефицитом этого белка. Но, еще не ясно, каким типом клеток костной ткани он синтезируется. Протеогликаны - класс сложных соединений, состоящих из различных белков, содержащих олигосахариды, связанные с гликозаминогликанами (хондроитинсульфат, дерматансульфат, кератансульфат, гепарин). Среди них различают: Большой хондроитинсульфатсодержащий протеогликан. Предполагается, что этот протеогликан «захватывает пространство», которое должно стать костью, благодаря большому содержанию сульфата, в гидратированном состоянии способен занимать значительный объем пространства. ^ очень сходны по строению, соответственно имеют один или два гликозаминогликана, белковая часть содержит 24 аминокислотных остатка, богатых лейцином. Несмотря на биохимическое сходство, эти белки отличаются по локализации. Локализация более распространенного декорина совпадает с расположением коллагена, что соответствует его функции «отделывать» молекулы коллагена и регулировать диаметр фибрилл. Бигликан сохраняется в матриксе. К настоящему времени выделено много других типов протеогликанов, но это в основном белки клеточной поверхности, роль которых мало изучена. На долю альбумина приходится большая часть неколлагеновых белков. По иммунологическим свойствам идентичен сывороточному. Углеводы играют огромную роль в жизнедеятельности костной ткани, в процессах ее образования. На долю гликогена приходится 50-80мкг на 1г влажной ткани. Присутствие гликогена - необходимое условие процесса минерализации, он концентрируется главным образом на месте будущего центра минерализации. В костной ткани с большой интенсивностью протекают процессы гликолиза и пентозофосфатного пути. Уровень нуклеиновых кислот зависит от функциональной активности. В покоящихся остеобластах количество РНК невелико, тогда как в пролиферирующих и гипертрофированных клетках повышено. Отмечено снижение содержания РНК при превращении остеобластов в остеоциты. ДНК находится в ядрах преостеобластов, остеобластов и остеокластов. Высокое содержание РНК отражает их активную и постоянную биосинтетическую функцию: образование большей массы костного матрикса. Липиды играют важную роль в процессе минерализации и транспорта ионов через мембраны. Преобладают полярные липиды: фосфатидилхолин, фосфатидилсерин, фосфатидилэтаноламин. Всего 0,61% липидов на сухую массу ткани. Основная органическая кислота, находящаяся в костной ткани - цитрат. Её содержание в 230 раз превышает концентрацию в печени и достигает 90%. Активность цитратсинтетазы значительно выше активности ферментов, принимающих участие в распаде лимонной кислоты, а она, накапливаясь, принимает участие в регуляции уровня Са в сыворотке крови. Причем лимонная кислота находится в двух формах: 1. растворимой - принимает участие в цикле трикарбоновых кислот; 2. нерастворимой - неактивной, входящей в состав минерального компонента костной ткани. В костной ткани активно преобладают метаболические процессы. Характерная особенность - аэробный гликолиз. Потребление глюкозы как в аэробных, так и в анаэробных условиях остеогенными клетками значительно больше, чем клетками печени, мышц и других органов. Структура и функции костной ткани поддерживаются специфическими ферментами, синтезирующими и расщепляющими макромолекулярные компоненты органического матрикса кости и ферментами общих метаболических путей, снабжающих костные клетки энергией. Ферментам принадлежит важная роль в процессах минерализации и резорбции кости. Следует отметить специфическую локализацию ферментов. В остеокластах проявляется более высокая активность дегидрогеназ, кислой фосфатазы, аминопептидазы, по сравнению с другими клетками. В то же время остеокласты не содержат щелочной фосфатазы. Высокая активность аденилатциклазы, пируваткиназы, фосфотрансфераз в зонах роста, где протекают процессы кальцификации. Активность окислительных ферментов, таких как цитохромоксидаза, каталаза значительно ниже, чем, например, печени. Щелочная фосфатаза локализованная главным образом в остеобластах, в остеокластах вообще не обнаружена. Содержание этого фермента и его активность резко повышается в определенные сроки переломов кости, рахите и других патологий. Кислая фосфатаза сосредоточена в остеокластах. Она непосредственно участвует в резорбции кости, осуществляя расщепление органических эфиров фосфорной кислоты с освобождением фосфатных ионов. Таким образом, кислая фосфатаза - лизосомный фермент и ее главная функция заключается в катаболизме, тогда как щелочная - принимает участие в процессах минерализации. Основной белок костной ткани - коллаген, который содержится в количестве 15% - в компактном веществе, 24% - в губчатом веществе. Костный коллаген - коллаген I типа - в нем больше, чем в других видах коллагена, содержится оксипролина, лизина и оксилизина, отрицательно заряженных аминокислот, с остатками серина связано много фосфата, поэтому костный коллаген - это фосфопротеин. Благодаря своим особенностям костный коллаген принимает активное участие в минерализации костной ткани. В процессе жизнедеятельности костной ткани между ее компонентами и неорганическими ионами плазмы крови постоянно осуществляется обмен. Костная ткань является депо минеральных компонентов, буферной системой, участвующей в поддержании концентрации ряда ионов. Она быстро поглощает из крови введенный Са, также быстро, за короткое время содержание Са в ней уменьшается на 20%.в костной ткани обнаруживаются различные соединения Са: кальцийфосфат, карбонат кальция, соединения с Cl, F. ![]() Структура решетки неорганических кристаллов кости соответствует структуре кристаллов гидроксиапатита Ca10(PO4)6(OH)2 - это часть минеральной фазы кости, другая часть представлена аморфным фосфатом кальция. Он представляет плотную некристаллическую субстанцию в виде аморфных гранул, имеющих вид овалов или кругов, диаметром 5,0-20,0 нм. Является важным компонентом костной ткани, и его присутствие не зависит от анатомического строения кости, но подвержено значительным колебаниям в зависимости от возраста. Эта фаза преобладает в раннем возрасте, в зрелой же кости преобладающим становится кристаллический гидроксиапатит. Образование костной соли отражается общим уравнением: 5Ca2+ + 3HPO42- +4OH- → Ca5(PO4)3OH + 3H2O Растворению костной ткани способствует локальное повышение кислотности среды. При небольшом повышении содержания протонов водорода кость начинает растворяться, отдавая вначале катионы кальция: Ca5(PO4)3OH + 2Н+ → Ca4Н(PO4)3 + Ca2+ + H2O При большей кислотности среды происходит полный ее распад: Ca5(PO4)3OH + 7Н+ → 3Н 2PO4- + 5Ca2+ + H2O Гидролиз аморфного кальцийфосфата обеспечивает постоянную концентрацию кальция в интерстициальной жидкости костной ткани. В настоящее время известно более 30 микроэлементов: Си, Sr, Zn, Ba, Al, Be, Si, F и другие. Они необходимы для жизнедеятельности отеогенных клеток в процессе оссификации и декальцинации. Обызвествление костной ткани и ее декальцинации находятся в тесной зависимости от содержания микроэлементов. Так, Sr и V способствуют обызвествлению, a Zn и Ва участвуют в регуляции процесса декальцинации. Mg активирует ряд ферментов, в частности, щелочную фосфатазу, участвующую в процессе минерализации. Особого внимания заслуживает Sr. Его химические свойства близки к Са. Sr конкурирует с Са за место в кристаллической решетке, однако Sr удерживается в меньшей степени, чем Са, в том случае, если в рационе преобладает Са. При дефиците же Са в рационе Sr поглощается организмом в значительно больших количествах, чем в норме. Длительное поступление избыточных количеств Sr ведет к замещению им ионов Са в кристаллической решетке гидроксиапатита, в результате чего кости деминерализуются и деформируются. В зрелом организме процессы минерализации и резорбция кости находятся в состоянии динамического равновесия. Минерализация - это формирование кристаллических структур минеральных солей костной ткани. Активное участие в минерализации принимают остеобласты. Для минерализации требуется много энергии (в форме АТФ), регулируемой многими факторами, включая ферменты, гормоны, витамины. Решительный поворот в изучении минерализации начался с 1923г., вскоре после открытия в костной ткани фермента щелочной фосфатазы. Английский биохимик Р.Робинсон высказал предложение, что фосфорнокислый кальций откладывается там, где действует этот фермент. Однако щелочная фосфатаза содержится во многих тканях, не подвергающихся минерализации, и для того, чтобы произошло обызвествление необходимы другие факторы. Позднее было доказано участие многих факторов: гликогена, ферментов гликолиза, АТФ, ЦТК, гликозаминогликанов. Для приведенных всех теорий и некоторых экспериментальных данных общим является представление о ведущей роли ферментов, отщепляющий неорганический фосфат от органического субстрата. Концентрация фосфата в участках функционирования этих ферментов повышается, достигая уровня, при котором начинается его самопроизвольное осаждение, приводящее к кристаллизации. Дальнейшие исследования позволили предположить, что процесс кальцификации состоит в очаговом образовании центров кристаллизации гидроксиапатита из растворов Р и Са под действием коллагеновых волокон, в которых необходимо специфическое взаиморасположение реакционноспособных групп боковых аминокислотных цепей, способных служить центрами кристаллизации. Важную роль в минерализации выполняют гликозаминогликаны, в частности хондроитинсульфат, которые обладают повышенным сродством к ионам Са и Р. подтверждением служат экспериментальные данные, демонстрирующие, что гликозаминогликаны интенсивно секретируются остеобластами в зоне минерализации, а затем подвергаются действию лизосомальных ферментов, образуя высокоактивные ионы. Биохимическую основу нуклеации первичных зародышевых кристаллов составляет реакция образования комплекса между коллагеном, АТФ, Са и хондроитинсульфатом. К факторам, контролирующим кристаллообразование на волокнах коллагена относится также пирофосфат, который ингибирует минерализацию. Доказана также роль в этом процессе фосфолипидов, без которых органический матрикс костной ткани утрачивает способность обызвествляться. ^ 1-й ЭТАП: остеобласты начинают синтезировать костный коллаген, который содержит фосфаты и формирует хондроитинсульфаты. Костный коллаген является матрицей для процесса минерализации. Особенностью процесса минерализации является перенасыщение среды ионами кальция и фосфора. На 1 этапе минерализации кальций и фосфор связываются с костным коллагеном. Обязательный участник процесса - сложные липиды. 2-й ЭТАП - в зоне минерализации усиливаются окислительные процессы, распадается гликоген, синтезируется необходимое количество АТФ. Кроме того, в остеобластах увеличивается количество цитрата, необходимого для синтеза аморфного фосфата кальция. Одновременно из лизосом остеобластов выделяются кислые гидролазы, которые взаимодействуют с белками органического компонента и приводят к образованию ионов аммония и гидроксид-ионов, которые соединены с фосфатом. Так формируются ядра кристаллизации. Ионы кальция и фосфора, которые были связаны с белково-углеводным комплексом, переходят в растворимое состояние и формируют кристаллы гидроксиапатита. По мере роста кристаллы гидроксиапатита вытесняют протеогликаны и даже воду до такой степени, что плотная ткань становится практически обезвоженной. Ингибитор процесса минерализации - неорганический пирофосфат. Его накопление в кости может препятствовать росту кристаллов. Чтобы этого не происходило, в остеобластах есть щелочная фосфатаза, которая расщепляет пирофосфат на два фосфатных остатка. При нарушении процессов минерализации - например, при заболевании оссифицирующим миозитом - кристаллы гидроксиапатита могут появлятся в сухожилиях, связках, стенках сосудов. Вместо кальция в костную ткань могут включаться другие элементы - стронций, магний, железо, уран и т.д. После формирования гидроксилапатита такое включение уже не происходит. На поверхности кристаллов может накапливаться много натрия в форме цитрата натрия. Кость выполняет функции лабильного (изменчивого) депо натрия, который выделяется из кости при ацидозе и, наоборот, при избытке поступления натрия с пищей, чтобы предотвратить алкалоз - натрий депонируется в кости. В ходе роста и развития организма количество аморфного фосфата кальция уменьшается, потому что кальций связывается с гидроксиапатитом. ^ На обмен кальция и фосфора влияют: паратгормон, тиреокалъцитонин, большая группа витаминов. За сутки из кишечника всасывается примерно 1г кальция и только 1/3 от этого количества усваивается тканями организма. Столько же – 1г - ежесуточно теряется с мочой и калом. В межклеточных жидкостях содержится тоже в среднем 1г кальция. Значит, за одни сутки полностью обновляется весь внеклеточный кальций организма. У взрослого здорового человека в возрасте до 40 лет все процессы минерализации и резорбции костной ткани находятся в равновесии. У детей до окончательного окостенения наблюдается положительный кальциевый баланс. После 40-летнего возраста - отрицательный баланс кальция. Паратгормон - повышает содержание сывороточного Са2+, вызывает резкое усиление процессов резорбции, выражающееся в разрушении минеральной и органической основы костной ткани. Под действием данного гормона увеличивается число остеокластов и их метаболическая активность, что доказывается повышением Са2+ в крови выделением с мочой оксипролина. Тиреокалъцитонин, напротив, ингибирует резорбцию кости остеокластами, поэтому его применяют в клинике при заболеваниях, связанных с усиленной резорбцией кости (остеопорозы различного происхождения, замедленное заживление переломов, несовершенный остеогенез). Наиболее сильный эффект резорбции имеют тироксин и паратгормон. Кортикостероиды (кортизол) тормозят всасывание кальция в кишечнике, увеличивают синтез и секрецию паратгормона. При недостатке эстрогенов, которые угнетают резорбцию, возникает остеопороз. В регуляции обмена костной ткани участвует также большая группа витаминов. При дефиците витамина А происходит утолщение костей, изменение их формы, существенные изменения наблюдаются в костях черепа. Т. к. его воздействие определяется специфическим влиянием на активность остеобластов и остеокластов, тормозится синтез гликозаминогликанов, нарушается остеогенез и рост костей. Избыток вызывает зарастание эпифизарных хрящевых пластинок и замедление роста кости в длину. При дефиците витамина С снижается скорость синтеза РНК, коллагена и нарушается общий механизм, от которого зависти синтез белков, ферментов, гликозаминогликанов, влияющих на биохимическую, морфологическую и функциональную специализацию элементов костной ткани, что проявляется в замедлении роста костей и заживлении переломов. Витамин D - стимулирует минерализацию на уровне транскрипции, усиливая экспрессию остеокальцина. Активный витамин D3 увеличивает всасывание кальция в кишечнике и повышает усвоение кальция костной тканью, усиливает действие паратгормона в костной ткани и почках. Зубы – костные образования в ротовой полости. Служат для захватывания, удерживания и механической обработки пищи. У человека важную роль играют в произношении звуков. Анатомически зубы состоят из трех частей: коронка, шейка и корень.
Коронка и корень зуба разделены шейкой, которая плотно охвачена десной. Внутри коронки имеются полость зуба и корневые каналы, которые заполнены мягкой тканью – пульпой. У зуба есть твердые ткани - эмаль, дентин, цемент и мягкие – пульпа. ЭМАЛЬ. Является самой твердой тканью зуба. По твердости ее, нередко, сравнивают с кварцем. Твердость эмали 398 кг/мм2. Это обусловливается высоким содержанием в ней минеральных солей. ^ 1. защита дентина и пульпы от механических, химических и температурных раздражителей. 2. проницаемость - основной путь проникновения со стороны пульпы и из слюны ионов кальция, аминокислот, витаминов, токсинов. Химический состав: 1. Вода - 3-4% 2.Органические вещества – 1,5% 3. Неорганические вещества – 95-97%, из них: Са - 37%, Р - 17%. Толщина эмали: 1,7 – 3,5мм на жевательной поверхности и 0,01мм у шейки. Основным образованием эмали являются кристаллы, формирующие эмалевые призмы. Это тонкие граненные цилиндрические образования, проходящие через всю толщу эмали. Толщина 3-6мкм, длина – больше толщины эмали. Призмы собраны в пучки (по 10-20) и располагаются параллельно длинной оси зуба в области края, а на боковых поверхностях – перпендикулярно к длине оси зуба. Поверхность эмали имеет зернистый рельеф в виде бугорков и ямок, обусловленный округлыми окончаниями кристаллов. Между эмалью и дентином находится тонкая органическая оболочка. Поверхность эмали также покрыта органическими оболочками. ^ 1. Белки – образуют основу формирования эмали – белковую матрицу. В состав органической матрицы входят три группы белков: а) белки, нерастворимые в соляной и этилендиаминтетрауксусной кислотах – 0,18-0.2%. По своим свойствам близки к коллагену и эластину и играют роль «скелета», придающего устойчивость структуре эмали в целом. б) Са - связывающий белок эмали (КСБЭ) – 0,17% (М.м 20000). Он может связывать 8-10 ионов Са и образуется белковая трехмерная матричная сетка (белок соединен между собой Са-мостиками) не растворимая в нейтральной среде. Подкисление до рН 4,0 разрушает этот комплекс с минеральной фазой. Длина субъединицы КСБЭ, состоящей из 160-180 аминокислотных остатков – 25нм, это соответствует длине основного кристалла эмали – гидроксиапатита. Ионы Са, связывающиеся с матрицей, служат зонами роста этих кристаллов. в) водорастворимый белок эмали, который не способен к образованию комплекса с Са. Его роль еще не ясна.
обеспечивает энергию для процессов образования ядер кристаллизации. На поверхности эмали содержится в 10 раз больше углеводов, чем в глубоких слоях.
деминерализации твердой ткани зуба. Неорганические вещества: Основным минеральным компонентом эмали являются кристаллы гидроксиапатита.
В состав неорганических веществ входят около 20 микроэлементов: железо, цинк, свинец, олово и т. д. Их количество больше в поверхностном слое эмали. Поступление фтора вызывает ряд изменений в структуре эмали (в части кристаллов две гидроксильные группы замещены на фтор), увеличивая содержание фторапатита. ![]() Флюороз зубов (эндемический флюороз зубов) – это хроническое заболевание, встречающееся в местностях с избыточным содержанием фтора в питьевой воде. Заболевание, развивающееся до прорезывания зубов. При флюорозе поражается преимущественно эмаль зубов. Флюороз обусловлен длительным поступлением в организм микроэлемента фтора и выражается образованием на поверхности эмали пятен и дефектов различной величины, формы и цвета. В тяжелых случаях поражаются кости скелета. Кристаллы гидроксиапатита. Каждый кристалл покрыт оболочкой толщиной около 0,1 нм, а кристаллы расположены на расстоянии 2,5 нм друг от друга. Они способны к физико-химическому обмену через гидратную оболочку. Большинство неорганических ионов гораздо меньше толщины гидратного слоя и могут проникать в него и накапливаться. Кроме того, в кристаллической решетке гидроксиапатита имеются вакантные места. Наиболее высокое содержание Са наблюдаеется в поверхностных слоях мембраны. ^ В развитие эмали выделяют две фазы: 1. Образование органической матрицы и первичная минерализация. 2. Созревание эмали, окончательное отложение минеральных солей. У непрорезовшегося зуба в молодой эмали много органических веществ, воды, микропор, щелей, которые позволяют циркулировать зубной жидкости. Минеральных солей мало (25-30%). После прорезывания зубов минерализация проходит быстро. Происходит замещение воды и органических соединений минеральными солями (преимущественно гидроксиапатитами). Зрелая эмаль содержит белка в 25-100 раз меньше. В зрелой эмали больше кристаллов фторапатитов, которые менее ратворимы в кислотах, чем гидроксиапатиты. С возрастом снижается пористость, рельефность, исчезают бугры. Минерализация происходит как эндогенно – вещества поступают с зубным ликвором от пульпы зуба, так и экзогенно – из слюны, особенно после прорезывания. В регуляции минерализации принимают участие: 1. паратгормон; 2. тироксин; 3. витамин Д: - стимулирует синтез Са-связывающих белков; - стимулирует активность фермента цитратсинтетазы и синтез цитрата; 4. витамин С: - формирует коллагеновые белки; - способствует уплотнению связочного аппарата. Эмаль – бессосудистая ткань, ее постоянство поддерживается за счет динамического равновесия реминерализации-деминерализации. Обменные процессы осуществляются за счет гидростатических, термодинамических эффектов, электростатических и осмотических токов и механизмов, которые регулируют проницаемость твердых тканей зуба. В патологических процессах большую роль играет проницаемость эмали: от поверхности эмали к дентину и пульпе и от пульпы к дентину и поверхности эмали. Уровень проницаемости меняется под воздействием ряда факторов: - электрофорез, ультразвуковые волны, фермент гиалуронидаза усиливают проницаемость эмали; - снижают проницаемость обработка поверхности эмали раствором фторида натрия; - снижается с возрастом. Особенности метаболизма эмали - это крайне низкая скорость обмена. Обмен ионами возможен со стороны полости рта - через слюну. ДЕНТИН. Это грубоволокнистая ткань. Составляет основу зуба. Химический состав:
- Са – 28%; - Р – 16% Минеральные вещества представлены: - фосфатом кальция; - карбонатом кальция; - фторидом кальция. Твердость дентина уступает эмали - 60кг/мм2. По степени минерализации дентин аналогичен компактному веществу костной ткани. Минеральный компонент - гидроксиапатит, в котором чаще, чем в кости, обнаруживается магний. Фтористые соли также содержатся в дентине. В состав органического вещества дентина входит коллаген, богатый фосфатом, хондроитинсульфаты, гиалуроновая кислота. При развитии кариеса в поврежденном дентине и уменьшается количество оксипролина и оксилизина и растет количество гликозаминогликанов. Всю массу дентина пронизывают канальцы, в просвете которых расположены отростки одонтобластов (клеток пульпы), нервные окончания (в резцах больше). Количество нервных окончаний увеличено в зонах, прилежащих к шейке зуба. Этим объясняется болезненность при лечении кариозных полостей. Дентин постоянных зубов – бесклеточная, бессосудистая ткань, пронизанная каналами, в которых находятся одонтобласты. Питание дентина осуществляется через сосуды пульпы. Обмен веществ в дентине протекает медленнее, чем в костной ткани. В основном осуществляется минеральный обмен. ЦЕМЕНТ. Состоит из основного вещества, пропитанного солями извести. Трубочек и сосудов в цементе нет. Питается путем диффузии со стороны периодонта. Химический состав:
Цемент еще менее минерализован, чем дентин. Здесь больше воды и протеогликанов. Клеточные элементы - цементобласты. ПУЛЬПА. Мягкая ткань, заполняющая полость зуба. Пульпа коронки представлена рыхлой соединительной тканью с нежной сетью проколлагеновых и коллагеновых волокон и большим количеством клеточных элементов. В пульпе корня коллагеновые волокна толще и плотнее идут по ходу нервно-сосудистого пучка.
- одонтобласты; - звездчатые клетки; - фибробласты; - макрофаги. 2. Химический состав: - белок – 52%; - гликоген – 42%. Кроме фибропластов, в пульпе есть и жировые клетки. Функции пульпы: а) трофическая – через отростки одонтобластов осуществляется питание дентина, коронки, корня; б) пластическая – связана с образованием дентина; в) защитная – клетки эндотелия в ответ на проникновение чужеродных веществ образуют соединительнотканную капсулу, ограничивающую зону повреждения от интактных участков. Пульпа зуба отличается относительно высокой активностью окислительно-восстановительных процессов, повышенным потреблением кислорода. В пульпе идет синтез РНК. Поскольку пульпа наиболее метаболически активна, она богата ферментами, в основном углеводного обмена, гликолиза. ^ На поверхности зуба имеются: кутикула, пелликула, зубной налет, зубной камень, муциновая пленка. 1. Кутикула теряется после прорезывания зуба и не играет существенной роли. 2. Пелликула образуется на поверхности после прорезывания зуба. Состоит из белково-углеводного комплекса: муцина, гликопротеинов, сиалопротеинов. В ней много глютаминовой кислоты, аланина и сиаловой кислоты. Во многих местах она покрыта слоем зубного налета. По мнению многих авторов ее можно рассматривать, как старый зубной налет, который видоизменился вследствии растворения содержащихся в ней бактерий.
эмали. Большинство авторов отводят зубному налету ведущую роль в возникновение кариеса. Зубной налет – это скопление микроорганизмов и продуктов их жизнедеятельности. Он начинает накапливаться уже после 2ч. После чистки зубов. В 1мг находится около 500 000 000 микробов. В первые 24ч. преобладает кокковая инфекция, после 24ч – палочковидные бактерии, через 2 суток – нитевидные бактерии. Без микроорганизмов зубной налет не образуется. Наиболее важную роль в развитии кариеса играет Str. mutan, т.к. они активно формируют зубной налет. Состав зубного налета: вода (78-80%); белок (9,6-12,7%); углеводы (6,9-7,7%): глюкоза 3%, сахароза 2,5%, полисахариды 10% (леван, декстран, сиаловые кислоты); липиды (фосфолипиды, холестерол); ионы P, Ca, Na, K, Mn, Fe (меньше, чем в слюне); ферменты (более 50 микробного происхождения): сульфатаза – приводит к разрушению органического каркаса эмали, дентина, коллагеназа, протеазы – гидролизуют коллаген десен и кости альвеолярного отростка, гиалуронидаза – расщепляет гиалуроновую кислоту (основное межклеточное вещество соединительной ткани), эластаза – разрушает эластин сосудистой стенки, вызывая кровотечения, нейроминедаза – разрушает сиаловые кислоты пелликулы, расщепляет гликопротеины слюны, участвует в полимеризации сахарозы. Содержание фтора в зубном налете может в 10-100 раз превышать его содержание в слюне. Он включается в состав зубного налета из пищи, воды, слюны, но может поступать и из эмали зуба при снижении рН зубного налета и активации процессов деминерализации эмали. С возрастом содержание фтора в зубном налете увеличивается. Основу матрикса зубного зубного налета составляют гликопротеины слюны. Под действием ферментов бактерий синтезируются липкие полимеры, такие как декстран, леван. Происходит адгезия бактерий, фиксация на поверхности зуба. При большом употреблении углеводной пищи (сахароза) под действием ферментов микроорганизмов зубного налета увеличивается кислотообразование. Образуются органические кислоты: молочная, ПВК. Они при отложении зубного налета растворяют межпризматическое вещество эмали, образуя микрополости, которые заполняются бактериями. Происходит повышение процессов декальцинации над реминерализацией. Расщепление азотсодержащих остатков пищи различными ферментами микроорганизмов зубного налета ведет к образованию продуктов щелочного характера, способствующие осаждению в органическом матриксе зубного налета фосфатов кальция из слюны и жидкости десневого кармана с образованием зубного камня. ^ Зубной камень возникает в результате осаждения из слюны солей – фосфатов и карбонатов кальция и магния в органическую матрицу зубного налета. Зубной камень так же можно рассматривать как минерализованную зубную бляшку, прикрепленную к эмали в области поверхности корня зуба. Различают наддесневые и поддесневые зубные камни. Химический состав: - кальций - 21-29%; - фосфор – 12-16%; - элементы: магний, натрий, железо, кремний, алюминий, цинк и др. - все виды аминокислот, но больше всего глютаминовой, аспарагиновой, глицина, аланина, валина, лейцина; - углеводы - 19% (глюкоза, галактоза, арабиноза, гликозаминогликаны, галактозамин, глюкуроновая кислота); - липиды – фосфолипиды, холестерол, ди- и триглицерины, свободные жирные кислоты. Зубной камень имеет слоистую структуру. Его образованию способствует снижение коллоидоустойчивое состояние слюны при смещении ее рН в щелочную сторону в связи с накоплением аммиака и потерей углекислого газа. Зубной камень играет важную роль в патогенезе болезней - пародонта. На шероховатой поверхности зубного камня задерживаются остатки пищи, эпителий, микроорганизмы. Токсины, выделяемые ими, оказывают раздражающее действие на десну и способствуют развитию воспаления – гингивита. Зубной камень механически действует на десну, оттесняя ее от шейки зуба, что приводит к изъязвлению десны, увеличению десневого кармана и изменению химического состава десневой жидкости. Это способствует активации процессов отложения зубного камня, следовательно, усилению воспаления, т.е. образуется прочный круг, ведущий к гибели тканей пародонта, расшатыванию и выпадению зубов. ^ Кариес (костоеда) - самое распространенное заболевание. Поражается 80-90% населения земного шара. На возникновение этого заболевания могут влиять как общие, так и местные факторы. ^ зубной налет, бактерии, нарушение состава, свойств ротовой жидкости, углеводные остатки пищи. Насчитывается свыше 400 различных теорий возникновения кариеса. Наибольшее распространение получили: нервно-трофическая, клеточно-трофическая, иммунологическая, теория встречных воздействий на пульпу зуба. Их суть сводится к тому, что нарушается равновесие между слюной и твердыми тканями зуба. Превалирует деминерализация (растворение веществ зуба) над минерализацией. Клинически кариес начинается на поверхности зуба. Первым видимым признаком является кариозное белое пятно – признак деминерализации эмали. Непосредственной причиной кариеса и деминерализации эмали и дентина является выработка органических кислот (молочной, уксусной, пропионовой). Эти кислоты образуются под действием ферментов микроорганизмов. Микроорганизмы полости рта и зубного налета (прежде всего молочнокислые стрептококки) способны быстро превращать углеводы пищи, особенно сахарозу, сначала в полисахариды, а затем в глюкозу, ПВК, молочную кислоту. При этом снижается рН среды до 4-5. Кислоты растворяют кристаллы эмали и дентина. Происходит очаговая деминерализация и деполимеризация эмали. Важную роль в кариесрезистентности принадлежит фтору. Нарушение минерализации ткани приводит к повышению проницаемости. В ранней стадии кариеса показана возможность проникновения в очаг поражения ионов кальция. Это создает новый подход к проведению патогенетической терапии в начальной стадии кариеса зубов. Неорганический фосфор в белом кариозном пятне снижен на 73%. Увеличивается проницаемость эмали для лизина, глицина (в 2 раза). Содержание аминокислот увеличивается в 3 раза. В кариозной полости обнаружена высокая активность ферментов гиалуронидазы, фосфатазы. Затем идет образование пигментированного пятна. Это связано с накоплением аминокислоты тирозина с последующим превращением в пигмент меланин. На этой стадии к расстройствам реминерализации присоединяется изменение белкового обмена. Идет распад белковой матрицы, не коллагеновых белков. В коллагене изменяется соотношение кислых и основных аминокислот. Распадаются гетерополисахариды. Содержание углеводов увеличивается в 12 раз. На стадии среднего кариеса процесс распространяется вглубь, образуется конусовидный очаг поражения. Повышается проницаемость по направлению от кариозной полости к пульпе. Распадаются коллагеновые волокна. В клетках повреждаются митохондрии, уменьшается АТФ. Накапливаются кислые продукты, что приводит к ацидозу. Накапливаются биогенные амины (гистамин, серотонин), что вызывает сильные «рвущие боли». Отток эксудата ухудшается. Повышается внутриклеточное давление. ^ Качественное определение неорганических соединений костной ткани. В колбу помещают примерно 5 г костной ткани, приливают 25 мл 0,5% раствора серной кислоты и оставляют на сутки. ^ Отфильтровывают 3-4 мл вытяжки в пробирку и добавляют 10-15 капель насыщенного раствора щавелевокислого аммония. При отсутствии осадка количество оксалата аммония увеличивают. ^ Щавелевокислый кальций, полученный в предыдущем опыте, отделяют фильтрованием. К фильтрату добавляют по каплям (7-10 капель) концентрированного раствора аммиака. Выпадает осадок фосфата магний – аммония. При необходимости количество аммиака увеличивают. ^ К нескольким миллилитрам профильтрованной вытяжки из костной ткани (2-3 мл) прибавляют 5-6 капель (при необходимости больше), молибденового реактива и нагревают до кипения. Медленно образуется желтый осадок фосфорномолибденокислого аммония. Литература: 1. Материал лекций. 2. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М.: «Медицина», 2004г. Дополнительная литература: 1. Караков К.Г., Эльбекьян К.С., Маркарова Г.В. Учебное пособие: Основы биохимии тканей и органов полости рта. Ставрополь, 2012г. |