|
Скачать 212.08 Kb.
|
На правах рукописи Зозуля Елена Павловна Методы автоматического анализа биосигналов с хаотическими свойствами для медицинских компьютерных систем Специальность: 05.11.17 – Приборы, системы и изделия медицинского назначения Автореферат диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург – 2009 Работа выполнена в Санкт-Петербургском государственном электротехническом университете “ЛЭТИ” им. В.И.Ульянова (Ленина) Научный руководитель – доктор технических наук, доцент Манило Людмила Алексеевна Официальные оппоненты: доктор технических наук, профессор Гельман Виктор Яковлевич кандидат физико-математических наук Хаустов Александр Викторович Ведущая организация – Санкт-Петербургский институт информатики и автоматизации РАН Защита диссертации состоится “____” ___________ 2009 г. в ____ часов на заседании совета по защите докторских и кандидатских диссертаций Д212.238.09 Санкт-Петербургского государственного электротехнического университета “ЛЭТИ” имени В. И. Ульянова (Ленина) по адресу: 197376, Санкт-Петербург, ул. Проф. Попова, 5. С диссертацией можно ознакомиться в библиотеке университета. Автореферат разослан “____” __________ 2009 г. Ученый секретарь совета по защите докторских и кандидатских диссертаций Болсунов К.Н. ^ Актуальность темы. В настоящий момент остро стоит проблема анализа биосигналов с хаотическими свойствами. Решение этой проблемы важно для распознавания состояний, связанных с динамикой генерирующих их систем. Это могут быть задачи исследования электрической активности мозга в различных стадиях сна, в процессе анестезии, обнаружение ЭЭГ патологий, классификации нарушений ритма сердца по ЭКГ и ритмограмме. Биосигналы включают в себя детерминированную, стохастическую и хаотическую составляющие. Первая и вторая компоненты могут быть распознаны традиционными методами корреляционного и спектрального анализа, в то время как анализ хаотических свойств вызывает определенные трудности, которые связаны с необходимостью применения методов нелинейной динамики, требующих обработки больших выборок данных. Современные методы нелинейной динамики позволяют получить ряд показателей, оценивающих хаотические свойства сигнала. В ряде работ показана эффективность использования аппарата детерминированного хаоса для анализа физиологических процессов. Нарушения сердечного ритма повседневно встречаются во врачебной практике. Такая сердечная аритмия как фибрилляция предсердий (ФП) вызывает опасные осложнения вплоть до инсульта, поэтому очень важно своевременно выявить это нарушение и принять соответствующие меры. Больным с постоянной формой фибрилляции предсердий целесообразно проводить суточное мониторирование, поскольку этот метод предоставляет дополнительную информацию об эффективности или неэффективности проводимого лечения, его обоснованности. Однако для пациентов с пароксизмальной формой фибрилляции предсердий важно как можно раньше выявить наличие этого нарушения с момента его появления. Автоматическое обнаружение фибрилляции предсердий в системах компьютерной диагностики кардиологического назначения представляет собой довольно сложную задачу, которая пока не нашла удовлетворительного решения. Не существует надежного алгоритма автоматического обнаружения фибрилляции предсердий в кардиомониторных системах, отвечающего высоким требованиям по времени выполнения, а также по уровню чувствительности и специфичности. Подтверждение гипотезы математической модели сердечного ритма при фибрилляции предсердий, заключающейся в том, что последовательность кардиоинтервалов при этой аритмии является хаотическим процессом, позволяет применить методы нелинейной динамики для разработки алгоритма автоматического обнаружения ФП. Наряду с этой проблемой, также остро стоит задача автоматической классификации типов фибрилляции предсердий, решение которой позволяет повысить эффективность применяемой антиаритмической терапии. Существующий метод, основанный на выделении детерминированных образов, имеет ряд недостатков. Переход от традиционной скаттерограммы к анализу в трехмерном пространстве позволяет разработать алгоритм, надежно классифицирующий исследуемые типы ФП. Таким образом, разработка более совершенных методов анализа биосигналов, обладающих хаотическими свойствами, является актуальной задачей. ^ является разработка и исследование методов анализа биосигналов для медицинских компьютерных систем, обеспечивающих распознавание фрагментов сигнала с хаотическими свойствами. Для достижения поставленной цели определены следующие задачи:
^ . Для решения поставленных задач в диссертационной работе использовались методы математического моделирования, теория случайных процессов, методы нелинейной динамики, теория распознавания образов и линейный дискриминантный анализ. ^ . В процессе проведения исследования получены следующие новые научные результаты:
Основные положения, выносимые на защиту:
^ составляют:
^ Результаты диссертационной работы использовались при выполнении научно-исследовательской работы по проектам РФФИ №06-01-00546 «Разработка методов и алгоритмов распознавания биомедицинских сигналов» и №07-01-00569 «Анализ нелинейных свойств и распознавание сигналов на базе теории детерминированного хаоса», в ОКР по теме: "Разработка технологий управления подачей анестетических газов и создание опытных образцов наркозно-дыхательного комплекса", шифр 2009-02-2.2-04-05 по государственному контракту № 02.522.11.2020 от 10 марта 2009 г., а так же в работах, проводимых рядом организаций: ЗАО «Микард-Лана» – система для функциональных исследований КардиоМетр МТ; ФГУ «Федеральный центр сердца, крови и эндокринологии» им. В.А. Алмазова – в исследовательских целях; СПбГУЗ «Городская больница №26» – в медицинских целях. Кроме того, результаты диссертации включены в УМК по дисциплинам Санкт-Петербургского государственного электротехнического университета: «Методы обработки биомедицинских сигналов и данных» и «Автоматизированные системы управляемого эксперимента». ^ . Основные теоретические и практические результаты диссертации были доложены и получили одобрение на 6 международных и всероссийских научно-технических конференциях: VII Международная научно-практическая конференция «Современная техника и технологии в медицине, биологии и экологии» (г.Новочеркасск, 2006г.); VIII Международная научно-техническая конференция «Физика и радиоэлектроника в медицине и экологии» (ФРЭМЭ’2008) (г.Владимир, 2008г.); VIII Международная конференция «Оптико-электронные приборы и устройства в системах распознавания образов, обработки изображений и символьной информации» (г.Курск, 2008г.); 9th International Conference “Pattern Recognition and Image Analisys: New Information Technologies” PRIA-9-2008 (г.Нижний Новгород, 2008г.); Ежегодные научно-технические конференции профессорско-преподавательского состава СПбГЭТУ «ЛЭТИ» (2006 – 2009 гг.); Международный симпозиум "Электроника в медицине" (Санкт-Петербург, 2006,2008г.); на внутривузовских научно-технических конференциях в СПбГЭТУ «ЛЭТИ», посвященных Дню радио, в 2006 и 2008 гг.; а также на научных семинарах кафедры Биомедицинской электроники и охраны среды СПбГЭТУ «ЛЭТИ». Публикации. Основные результаты диссертации опубликованы в 11 работах, среди которых 1 публикация в журнале из списка ведущих рецензируемых изданий, рекомендованных ВАК, а также 1 статья в других журналах и изданиях, 9 публикаций в трудах международных и российских научно-технических конференций и симпозиумов. ^ Диссертация состоит из введения, четырех глав, заключения, списка использованной литературы, включающего 66 наименований, среди которых 45 отечественных и 21 иностранных авторов, и двух приложений. Основная часть диссертации изложена на 156 страницах машинописного текста. Работа содержит 60 рисунков и 18 таблиц. В приложении 1 представлены графики и таблицы, полученные в результате проведенных исследований; в приложении 2 приведен листинг программ, реализующих разработанные алгоритмы, написанные в системе MATLAB. ^ Во введении обоснована актуальность темы диссертации, дается характеристика работы, приводится краткое содержание работы по главам. ^ диссертации рассмотрены основные электрофизиологические особенности такого нарушения сердечного ритма как фибрилляция предсердий, патогенез, причины возникновения, клинические проявления. Приведена классификация типов фибрилляции предсердий, различающихся по виду скаттерограммы. Кроме того, рассматриваются две существующие гипотезы математической модели, согласно одной из них сердечный ритм при фибрилляции предсердий является процессом с детерминированным хаосом, согласно другой – случайным процессом. Проведен обзор современных компьютерных медицинских диагностических систем кардиологического назначения, осуществляющих анализ сердечного ритма и обнаружение тех или иных аритмий. Рассматриваются существующие методы диагностики фибрилляции предсердий в кардиологических системах. Основываясь на информации, изложенной в данной главе, следует сделать вывод, что на настоящий момент не существует надежного, полностью автоматического алгоритма обнаружения фибрилляции предсердий в кардиомониторных системах, отвечающего высоким требованиям по времени выполнения, а также по уровню чувствительности и специфичности. Подтверждение вышеупомянутой гипотезы математической модели сердечного ритма при фибрилляции предсердий, заключающейся в том, что последовательность кардиоинтервалов при этой аритмии является хаотическим процессом, позволяет применить методы нелинейной динамики для разработки алгоритма автоматического обнаружения фибрилляции предсердий. Наряду с этой проблемой, в этой главе также рассматривается задача автоматической классификации типов фибрилляции предсердий, решение которой позволяет повысить эффективность применяемой антиаритмической терапии. Существующий метод, основанный на выделении детерминированных образов, имеет ряд недостатков. Переход от традиционной скаттерограммы к анализу в трехмерном пространстве позволяет разработать алгоритм, надежно классифицирующий исследуемые типы ФП. ^ посвящена исследованиям методов нелинейной динамики в применении к задачам анализа биосигналов. Помимо классических методов анализа во временной и частотной области существует устойчивая тенденция и все больший интерес к изучению сердечного ритма и других биосигналов с позиций нелинейного анализа. Исследовались такие методы нелинейной динамики, как корреляционная и фрактальная размерности, старший показатель Ляпунова, энтропийные методы. Анализ корреляционной размерности ( ![]() ![]() ![]() ![]() где ![]() ![]() ![]() Фрактальная размерность ![]() ![]() где ![]() ![]() Показатели Ляпунова ( ![]() ![]() ![]() где ![]() ![]() ![]() ![]() Рис. 1. Схема нахождения старшего показателя Ляпунова Эти методы анализируются на модельных сигналах: гармонический сигнал, белый шум, их смесь, логистическое отображение, аттрактор Лоренца, отображение Хенона. Опыты на модельных сигналах показали, что созданная программная реализация нелинейно-динамических алгоритмов дает адекватные оценки динамики систем разного типа. Все исследуемые нами методы нелинейной динамики являются трудоемкими при вычислении и требуют длинной выборки данных для расчетов. Эти недостатки рассматриваемых методов исключают возможность их применения для автоматической обработки сердечного ритма в кардиомониторных системах. Расчет корреляционной размерности для последовательности кардиоинтервалов позволил сделать вывод о присутствии детерминированной хаотической составляющей в сигнале сердечного ритма при фибрилляции предсердий (рис. 2). В случае процесса с детерминированным хаосом наблюдается насыщение на некотором уровне кривой зависимости корреляционной размерности от размерности вложения. При анализе случайного процесса насыщения нет, кривая имеет линейный характер. ![]() Рис. 2. Зависимость корреляционной размерности ![]() ![]() Принадлежность последовательности кардиоинтервалов при этом нарушении ритма к классу процессов с детерминированным хаосом открывает возможность использования широкого спектра методов нелинейной динамики для обработки и анализа этого класса биосигналов. Вычисленное значение размерности вложения дает информацию о степени сложности анализируемого процесса и, что особенно важно, позволяет строить псевдо-аттрактор. В свою очередь анализ сердечного ритма при ФП в псевдофазовом пространстве позволяет распознавать это нарушение ритма на фоне альтернативных групп. Кроме того, в этой главе исследуется применение энтропийных методов для анализа электроэнцефалограммы. В современной анестезиологии мониторинг функций мозга представляет возрастающий интерес для анестезиологов. В качестве математической модели ЭЭГ-сигнала можно рассматривать временной ряд, заданный последовательностью дискретных отсчетов, в котором степень регулярности находится в прямой зависимости от текущего уровня активности головного мозга. Наиболее адекватными данной модели являются методы анализа биосигналов, основанные на исследовании информационных характеристик, в частности, оценке энтропийных параметров. Существуют различные способы вычисления энтропии сигнала. В данной работе рассматривалась аппроксимированная, условная, а также спектральная энтропии. Исходя из полученных результатов расчета аппроксимированной, условной и спектральной энтропий для ЭЭГ при различных стадиях анестезии, следует сделать вывод о том, что энтропийные методы применимы к анализу такого рода сигналов. Используя эти методы, можно решить проблему определения момента выхода пациента из состояния анестезии. ^ рассматриваются методы анализа сердечного ритма на псевдофазовой плоскости, а также вопрос выбора псевдофазового пространства. В связи с тем, что значения размерности псевдофазового пространства для последовательности кардиоинтервалов при фибрилляции предсердий и других сердечных ритмах различны, для дифференциации вышеуказанных классов целесообразно рассматривать их в псевдофазовом пространстве какой-либо одной размерности. При анализе процессов с различными значениями корреляционной размерности, а соответственно и размерности вложения, в двумерном псевдофазовом пространстве мы получим частичные изображения псевдоаттракторов, а соответственно и разные картины. В качестве псевдофазового пространства выбрано двумерное. Обработка этих изображений позволяет дифференцировать типы сердечного ритма. Предлагаемый метод морфологического анализа кардиоритма, использующий также теорию детерминированного хаоса, является более эффективным способом описания нелинейных свойств образов. Предлагается ряд морфологических параметров, полученных при обработке фазового портрета сердечного ритма, которые можно использовать в качестве классифицирующих признаков при обработке сигналов, отличающихся степенью регулярности: длина ломаной линии; площадь, ограниченная контуром; длина этого контура (рис. 3). ![]() Рис. 3. Пример фазового портрета сердечного ритма Кроме перечисленных признаков, введен угловой показатель. Подсчитывалось количество линий, которые соответствуют переходам, указанным на рис. 4. Именно такие последовательности переходов характерны для сигналов, отличающихся слабой регулярностью, в частности, для последовательности кардиоинтервалов при фибрилляции предсердий. Выбор вышеуказанных признаков обусловлен результатами исследований на модельных сигналах и на последовательностях кардиоинтервалов. ![]() Рис. 4. Переходы на кардиоинтервалограмме и соответствующие им наклонные линии на фазовом портрете Исследование эффективности предложенных параметров выполнялась с использованием экспериментального набора записей ритмограмм, рассчитанных из записей ЭКГ-сигналов, полученных в 4-м кардиологическом отделении СПбГУЗ «Городская больница №31 (г. Санкт-Петербург). После предварительной обработки сигналов сформирована обучающая и контрольная выборки, содержащие по 50 фрагментов ритмограммы длительностью 300 отсчетов для каждого из следующих классов: 1. Фоновый ритм (нормальный ритм, синусовая аритмия). 2. Фибрилляция предсердий. 3. Частая желудочковая экстрасистолия. На рис. 4 показаны результаты линейно-дискриминантного анализа для двухклассовой задачи. Один класс был представлен набором реализаций с фибрилляцией предсердий, а второй – записями фонового ритма, включающими в себя синусовую аритмию и частую экстрасистолию. Ошибки первого и второго рода при этом составляли около 1% (рис. 5). Полученные результаты линейно-дискриминантного анализа рассчитаны для обучающей выборки, состоящей из 100 фрагментов по 100 кардиоинтервалов. ![]() Рис. 5. Результаты линейно-дискриминантного анализа Проведены исследования влияния длины фрагмента на ошибку обнаружения фибрилляции предсердий с помощью предлагаемого алгоритма. На той же обучающей выборке проведен линейный дискриминантный анализ при различных длинах реализаций (табл. 1). Таблица 1. Значения ошибки в зависимости от длины фрагмента
Применение метода морфологического анализа фазовой траектории в двумерном псевдофазовом пространстве к задачам обнаружения хаотических процессов дает несомненный эффект и показывает возможность автоматического обнаружения сложных нарушений сердечного ритма в течение более короткого промежутка времени – менее одной минуты. Реализация предлагаемого алгоритма в системах кардиологического наблюдения позволяет автоматически и своевременно обнаруживать фибрилляцию предсердий и тем самым повысить эффективность диагностики состояния сердечно-сосудистой системы. ^ посвящена разработке метода автоматической классификации типов фибрилляции предсердий. Предложено перейти от традиционной двумерной скаттерограммы к трехмерной гистограмме (рис. 6). Для того чтобы избавиться от одиночных выбросов, которые связаны с частыми экстрасистолами, а также от случайных помех, для дальнейшего анализа был выбран нижний срез трехмерной гистограммы, отстоящий от плоскости ![]() ![]() Рис. 6. Двумерная скаттерограмма и трехмерная гистограмма для мономодального типа фибрилляции предсердий К контуру полученного нижнего среза применялся структурный метод распознавания образов. Суть метода заключается в том, что граница фигуры представляется с помощью цепных кодов в виде последовательности соединенных отрезков, для каждого из которых указаны длина и направление. Направление каждого отрезка кодировалось цифрой от 0 до 3 (рис. 7). Р ![]() ис. 7. Нумерация направлений для 4-хсвязного цепного кода Были сформированы 3 эталонных образца (рис. 8). Цепной код полученной фигуры сопоставлялся с кодом эталонной фигуры, и вычислялась степень сходства. Степень сходства ![]() ![]() Рис. 8. Эталонные фигуры Например, пусть ![]() ![]() ![]() ![]() где ![]() Кроме обработки контура нижнего среза, также анализировалось распределение точек в фазовом пространстве скаттерограммы. Подсчитывалось количество точек попавших в закрашенные области(N1, N2, N3) и полученные числа сравнивались с количеством точек, не попавших в данную область(N’) (рис. 9). ![]() Рис. 9. Схема подсчета количества точек в различных областях скаттерограммы Таким образом, был сформирован алфавит признаков: - степень сходства нижнего среза трехмерной гистограммы с тремя эталонами: ![]() ![]() ![]() - соотношение количества точек, попавших в ту или иную область двумерного псевдофазового пространства скаттерограммы. ![]() ![]() ![]() ![]() Эффективность предложенного алгоритма дифференциации типов фибрилляции предсердий вначале оценивалась на модельных сигналах. Рассматривались математические модели для каждого типа этого нарушения ритма. Затем была сформирована база данных, содержащая достаточно большое количество ритмограмм с фибрилляцией предсердий различных типов, создана обучающая выборка. В процессе анализа результатов модельных экспериментов и экспериментов на реальных данных сформирована следующая блок-схема алгоритма (рис. 10.). ![]() Рис.10. Блок-схема алгоритма дифференциации типов фибрилляции предсердий Предлагаемый алгоритм автоматической классификации типов фибрилляции предсердий не имеет тех недостатков, которыми обладал ранее разработанный метод, основанный на формировании детерминированных образов, а именно чувствительностью к одиночным экстрасистолам и случайным помехам. Разработанный алгоритм проверен на контрольной выборке и показал высокие значения чувствительности и специфичности для каждого типа фибрилляции предсердий – ![]() Реализация данного алгоритма в системах кардиологического наблюдения позволяет автоматически и своевременно обнаруживать, какой именно тип фибрилляции предсердий у пациента и тем самым повышает эффективность применяемого лечения (рис. 11). ![]() Рис. 11. Схема биотехнической системы для исследования работы сердца Основные результаты работы
^ Статьи, опубликованные в изданиях, включенных в перечень ВАК: 1. Манило, Л.А. Автоматическое распознавание мерцательной аритмии с использованием оценок аппроксимированной энтропии [Текст] / Л.А. Манило, Е.П.Зозуля // Информационно-управляющие системы.– 2006. – №1 (20). – С. 21–27. Публикации в других изданиях:
|