|
Скачать 136.05 Kb.
|
Рецепт, 2005. - №2 (40).- С.21-26. БОТУЛИНИЧЕСКИЙ ТОКСИН ТИПА А И ЕГО РОЛЬ В ЛЕЧЕНИИ СПАСТИЧНОСТИ ПРИ ДЦП. Л.В. Шалькевич, Белорусская медицинская академия последипломного образования А.Н. Яковлев, Минский городской центр медицинской реабилитации для детей с психоневрологическими заболеваниями Детский церебральный паралич (ДЦП) - это гетерогенная по клиническим проявлениям группа синдромов, возникающая вследствие мультифакториального дизонтогенеза центральной нервной системы и характеризующаяся непрогрессирующим нарушением способности сохранять нормальную позу и выполнять произвольные движения. Определение ДЦП исключает прогрессирующие наследственные заболевания нервной системы, в том числе различные метаболические дефекты, поражения спинного мозга и периферических нервов. Популяционно-эпидемиологические исследования показывают, что в индустриально развитых странах частота церебрального паралича составляет 2 - 4 на 1000 населения. Данные о распространенности церебрального паралича по мере развития медицинской науки меняются. Некоторые автор отмечают в последние годы тенденцию к снижению заболеваемости церебральным параличом за счёт улучшения акушерской техники, профилактики и лечебных мероприятий. Другие, наоборот, считают, что на протяжении ряда лет частота церебрального паралича в индустриально развитых странах остается стабильной, что, вероятно, связано с поражением нервной системы преимущественно не во время родов, а в пренатальном периоде. Однако большинство авторов утверждают, что заболевание стало встречаться значительно чаще, и объясняют это снижением смертности среди недоношенных и новорожденных с низкой массой тела, у которых риск развития ДЦП весьма значителен [3,5,6,8]. Детский церебральный паралич занимает значительное место среди инвалидизирующих заболеваний детей и подростков. На преодоление этого тяжелейшего недуга в течение многих лет с большей или меньшей степенью эффективности были направлены усилия специалистов различных профилей. В последнее время в медицинской литературе стали появляться сообщения о новых высокотехнологичных методах лечения детского церебрального паралича. В середине 90-х годов появились первые публикации об использовании препарата Ботокса (Botox®) с целью снижения тонуса мышц, участвующих в построении патологического двигательного стереотипа у больных со спастическими формами ДЦП [17,18]. Названный препарат создан в США на основе токсина ботулизма, который после специальной многоступенчатой обработки в виде фармакологического агента был применен в офтальмологической практике для лечения страбизма и блефароспазма. В настоящее время известны 8 серологических подтипов ботулинического токсина: A, B, C1, C2, D, E, F, G. Ботулизм у человека могут вызвать серотипы A, B, E, F, G, но самым сильнодействующим является тип А. Краткая история ботулотоксина в качестве лечебного средства следующая: 20-е года прошлого столетия - в Калифорнийском Университете доктором Herman Sommer выделена чистая форма ботулинического токсина типа А. 1946 г. - микробиологом и токсикологом Dr. Edward J. Schants в Висконсинском университете получена изолированная кристаллическая форма препарата. 1949 г. – Burgen с коллегами демонстрирует возможность ботулинического экзотоксина блокировать передачу импульсов в нервно-мышечных синапсах. 1979 г. - Edward J. Schants получает высокоочищенный ботулинический токсин типа А (БТА), пригодный для использования в клинической практике. 1980 г. - калифорнийский офтальмолог A. B. Scott успешно применяет полученный чистый токсин для лечения страбизма у людей. 1984 г. - L. Fruet с соавт. Опубликовали результаты использования препарата при лечении блефароспазма. 1989 г. – государственный орган США Food and Drag Administration разрешает клиническое применение ВТХ-А при страбизме, блефароспазме и гемифасциальном спазме. В качестве лечебного препарата, ботулинический токсин типа А (препараты BOTOX® и Dysport®) зарегистрирован в большинстве стран мира, в 1994 году - в России, а с 30.11.2001 года – в Республике Беларусь (препарат Dysport®). Ботулинический токсин типа А представляет собой смесь различных протеинов, в состав которых входят нейротоксин (биологически активный компонент) и нетоксичные протеины. Нейротоксин состоит из двух полипептидных цепей – легкой, массой 50 кДальтон, и тяжелой, массой 100 кДальтон. Цепи соединены одной дисульфидной группой и одним атомом цинка. Эта особенность структуры молекулы нейротоксина обуславливает её конформационную лабильность и высокую чувствительность к воздействию механических, физических и химических факторов, приводящих к потере биологической активности. При использовании ботулотоксина в качестве терапевтического агента, полипептидные цепи нейротоксина стабилизируются крупными пептидными молекулами гемагглютининов и нетоксичных негемагглютининовых протеинов, большая молекулярная масса которых (730 кДальтон) препятствует как расщеплению нейротоксина, так и быстрой диффузии его в окружающие ткани, обеспечивая тем самым локальность воздействия. В легкой цепи нейротоксина типа А содержится 448 аминокислот, в тяжелой - 848. (Рис.1)* Механизм действия ботулинического токсина типа А заключается в трехстадийной пресинаптической блокаде выброса ацетилхолина из нервной терминали периферического холинергического синапса. Мишенью действия ботулинического нейротоксина являются транспортные белки, а именно синаптосомальный транспортный белок SNAP-25. При проведении локальных внутримышечных инъекций ботулинического токсина типа А, молекулы комплекса достигают нервных терминалий аксонов и прикрепляются к ним. Это первая стадия действия препарата. Затем наступает вторая стадия, которая носит название интернализации (адаптации), когда нейротоксин внедряется в эндоплазму холинергической терминали и распадается на короткую и длинную цепи. Короткая цепь (цинк-зависимая протеаза) необратимо и специфично расщепляет синаптосомальный транспортный белок SNAP-25, предотвращая выход ацетилхолина в синаптическую щель, деполяризацию и мышечное сокращение (третья стадия). В конечном итоге возникает стойкая хемоденервация инъецированной мышцы. [1,2]. Внутримышечное введение ботулотоксина вызывает, по крайней мере, два эффекта:
Снижение γ-активности ведет к расслаблению интрафузальных волокон мышечного веретена и уменьшает активность как мышечных рецепторов растяжения, так и эфферентной активности альфа- и гамма-мотонейронов. Клинически это проявляется в выраженном расслаблении инъецированных мышц и значительном уменьшении боли в них. При проведении локальных внутримышечных инъекций терапевтических дозах ботулинический токсин типа А не проникает через гематоэнцефалический барьер и не оказывает значимого системного действия. Предполагается наличие минимального пресинаптического захвата и обратного аксонального транспорта ботулотоксина из места его введения, что может служить объяснением наличия дистантных эффектов. Пресинаптическое расщепление транспортного белка нейротоксином является процессом быстрым и необратимым, и занимает около 30-60 минут, и специфический ботулинический антитоксин эффективен лишь в течение получаса после поступления нейротоксина к органам-мишеням [11]. Однако, весь процесс внедрения нейротоксина в эндоплазму холинергической терминали и блокада синаптосомального транспортного белка SNAP-25 занимает от 1-х до 3-х суток. Поэтому максимальный клинический эффект препарата начинает проявляться спустя некоторое время после проведения инъекции:
По результатам собственных наблюдений (50), имело место как немедленное (спустя 2 часа после инъекции), так и отсроченное (через 3-4 недели) наступление эффекта. При проведении локальных внутримышечных инъекций ботулинического токсина типа А синтез ацетилхолина и его депонирование в холинергической терминали, а также выделение трофических факторов не нарушаются [16]. Этим объясняется отсутствие развития атрофии мышц (в т.ч. на гистологическом уровне) даже после многократных повторных инъекций одну и ту же мышцу. Возникшая в результате инъекции ботулотоксина функциональная хемоденервация мышц стимулирует синтез нейротрофических факторов и развитие коллатеральных аксональных терминалий, с образованием новых функционально активных нервно-мышечных синапсов. Этот процесс начинается уже в первые 2 дня после введения ботулинического токсина и носит название спрутинг. В процессе реиннервации, один из таких нервных отростков создает новый нервно-мышечный синапс, что знаменует окончание клинического эффекта препарата и прекращение срока непосредственного действия ботулотоксина [12,14]. Мышечный тонус восстанавливается, как правило, спустя 3-6 месяцев после инъекции, но иногда длительность эффекта сохраняется до 1 года и более. Повторение локальных внутримышечных инъекций ботулинического токсина типа А необходимо приблизительно каждые 4-6 мес. Средняя продолжительность эффективного устранения симптомов спастичности (3-6 месяцев) после локальной внутримышечной инъекции ботулотоксина типа А нередко превосходит время, требующееся для восстановления новых нервно-мышечных синапсов и устранения индуцированного токсином паралича [7,11]. Механизм действия ботулотоксина значительно шире, чем только локальное миорелаксирующее действие. Предполагается действие токсина и на терминали чувствительных волокон различной модальности. В частности, это может объяснить быстрый анальгетический эффект локальных внутримышечных инъекций ботулинического токсина типа А. За счет механизма деафферентации рецепторов мышечных веретен и других видов чувствительных систем, ботулинический токсин типа А может оказывать непрямые эффекты на вышележащие отделы ЦНС. При исследовании моторного потенциала выявлено уменьшение латентных периодов его компонентов, снижение активации париетальной коры и каудальной дополнительной моторной области, изменение реципрокного торможения на уровне спинного мозга у больных с дистонией руки, отдельных компонентов стволовых тригеминальных и слуховых вызванных потенциалов. На фоне лечения ботулотоксином наблюдается достоверное снижение интернейронной гиперактивности, характерной для дистонии, хотя и не достигающей нормальных показателей после первой инъекции. Уменьшение возбудимости спинальных интернейронов может свидетельствовать о воздействии ботулотоксина А на нейрональные системы ЦНС через снижение афферентного потока к спинному мозгу. Такое опосредованное влияние ботулинического токсина типа А на стволовые и спинальные интернейроны может одним из наиболее вероятных объяснений дистантных эффектов, наблюдающихся в терапевтической практике. Клинические ремиссии в течение спастичности, нередко наблюдаемые после инъекции препарата, также, возможно, обусловлены тем, что вызываемая этим препаратом деафферентация рецепторов мышечных веретен способна привести к перестройке в нейродинамическом мышечной гиперактивности. Это позволяет считать локальные внутримышечные инъекции ботулинического токсина типа А средством не только симптоматического, но и патогенетического лечения спастичности. Воздействие ботулинического токсина типа А на афферентные механизмы подтверждается также динамикой болевых проявлений: боль исчезает раньше, чем проявляется полное миорелаксирующее действие препарата [7,10]. Обнаруживаемые нейрофизиологические эффекты ботулинического токсина типа А позволяют объяснить и случаи очень стойкого и длительного эффекта у больных со спастичностью после однократной инъекции, несмотря на то, что непосредственное синаптическое действие препарата ограничивается 3-мя месяцами. Ботулотоксин не может вызвать прямого химического действия на ЦНС, поскольку молекула с массой 150 кДальтон не проникает через гематоэнцефалический барьер. Радиографическими исследованиями выявлен лишь минимальный ретроградный аксональный транспорт по периферическому нерву, иннервирующему инъецированную мышцу. При этом токсин подвергается биодеградации и не способен оказать влияние на функцию нерва. Основными показаниями для использования метода локальных внутримышечных инъекций ботулинического токсина типа А у детей с детским церебральным параличом являются:
К настоящему времени проведено более 20 клинических испытаний эффективности локальных внутримышечных инъекций ботулинического токсина типа А при лечении спастичности у больных детским церебральным параличом [4,11]. Эффективность этого метода была доказана во всех упомянутых выше клинических испытаниях (в том числе - в двойных слепых, плацебо-контролируемых рандомизированных мультицентровых исследованиях). В результате проведения этих клинических исследований были доказаны следующие положительные результаты применения локальных внутримышечных инъекций ботулотоксина:
Каких-либо серьезных побочных эффектов применения ботулинического токсина типа А ни в одном из данных контрольных исследований не отмечено [9,15,18]. Собственный опыт использования локальных внутримышечных инъекций ботулинического токсина типа А у 50 детей с ДЦП убедительно доказал высокую эффективность и незначительное количество побочных эффектов. Несомненны преимущества лечения двигательных расстройств при детском церебральном параличе методом локальных внутримышечных инъекций ботулинического токсина типа А:
Локальные внутримышечные инъекции ботулинического токсина типа А могут проводиться стационарно и амбулаторно, в условиях процедурного кабинета, врачом, прошедшим специальную подготовку и имеющим разрешение (сертификат) на применение данного метода в медицинской практике. Дозировка и количество и локализация точек для инъекций определяются индивидуально для каждого пациента в соответствии характером, выраженностью и локализацией мышечной гиперактивности. Размер поля хемоденервации, вызываемой локальной внутримышечной инъекцией ботулотоксина типа А, зависит от дозы токсина и объема вводимого раствора. Наилучшие результаты достигаются при равномерном распределении препарата в несколько точек вдоль одной мышцы. Помимо этого, более полная блокада нервных терминалий наступает при инъекции токсина вблизи концевых моторных пластинок периферического нерва. Расчет дозы и выбор точек введения ботулинического токсина типа А основан на длительном опыте применения этого препарата в многочисленных медицинских центрах. Рекомендуемые в литературе схемы введения должны быть индивидуализированы с учетом ряда факторов. В целом, доза прямо пропорционально массе и объему мышцы, в которой требуется снизить двигательную активность. Большие дозы требуются для гипертрофированных или чрезвычайно активных мышц, либо когда требуется максимально длительное действие препарата. Известно, что введение ботулотоксина в мышцы, подвергшиеся ранее частичной хирургической денервации, является менее эффективным [13]. Степень расслабления мышцы определяется, главным образом, дозой введенного ботулинического токсина типа А, но в определенной степени зависит от степени разведения препарата, количества точек введения и их близости к двигательным точкам (зоне максимальной плотности нервно-мышечных синапсов) [17]. Вышеуказанные параметры могут быть особенно значимыми в случае введения в мышцу маленьких доз ботулотоксина типа А. В некоторых сравнительных клинических исследованиях отмечены лучшие результаты лечения и меньшее распространение токсина на прилежащие мышцы при множественных точках инъекций и большей концентрации вводимого раствора ботулинического токсина типа А [19,20]. В заключение необходимо отметить, что обязательным условием эффективного лечения спастичности с помощью локальных внутримышечных инъекций ботулинического токсина типа А является применение инъекций только как компонента целого комплекса нейрореабилитационных мероприятий, цели которых должны быть четко определены перед началом лечения (симптоматическое лечение, расширение функциональных возможностей или облегчение реабилитирующих процедур). В каждом случае принятие решения о необходимости применения ботулотоксина А должна быть разработана индивидуальная программа реабилитации, учитывающая особенности спастического синдрома у конкретного больного. Введение препарата – не цель, а лишь средство достижения ближайшей задачи – уменьшение спастики, а в результате (конечная задача) – снижение инвалидности и улучшение качества жизни людей, страдающих ДЦП. Литература:
![]() * Рис.1 Структура Ботулинического токсина типа А: LC – легкая цепь нейротоксинного комплекса HC – тяжелая цепь нейротоксинного комплекса S-S – дисульфидная связь NTNH – нетоксичный негемагглютинин HA – нетоксичный гемагглютинин Zn – молекула цинка |