Физиология иммунной системы icon

Физиология иммунной системы





Скачать 0.74 Mb.
Название Физиология иммунной системы
страница 7/8
Дата конвертации 03.04.2013
Размер 0.74 Mb.
Тип Реферат
1   2   3   4   5   6   7   8
^

3. ФАКТОРЫ ЕСТЕСТВЕННОЙ РЕЗИСТЕНТНОСТИ



Рис. 4.9. Механизмы естественной резвстенлюсти

Выделяют следующие факторы естественной резистентное -ти (рис. 4.9).


естественные барьеры — кожа, слизистые оболочки, первые всту­пают в контакт с возбудителем инфекций;

система фагоцитов, включающая нейтрофилы и макрофаги;

система комплемента (совокупность сывороточных белков), тесно взаимодействующих с фагоцитами;

интерфероны;

различные вещества, чаще всего белковой природы, участвую­щие в реакциях воспаления, фибринолиза и свертывания крови. Некоторые из них (лизоцим) обладают прямым бактерицидным действием;

систему естественных (нормальных) киллеров, не обладающих антигенной специфичностью (Т- и К-киллеры).
^

3.1. ЕСТЕСТВЕННЫЕ БАРЬЕРЫ


Главная роль в обеспечении барьерной функции отводится коже, которая, будучи неповрежденной, непроницаема для боль­шинства инфекционных агентов. Способность кожи к десквама-ции клеток обеспечивает механическое удаление агента. Воздей­ствие молочной кислоты и жирных кислот, содержащихся в поте и секретах сальных желез и обусловливающих низкое значение рН, оказывается губительным для большинства бактерий. Исключе­ние составляет Staphylococcus aureus, часто инфицирующий воло­сяные фолликулы и железы.

Секрет, выделяемый мукоцеллюлярным аппаратом бронхов, желудка, кишечника и других внутренних органов, действует как защитный барьер: препятствует прикреплению бактерий к эпите­лиальным клеткам и механически удаляет их за счет движения ресничек эпителия (при кашле, чихании).

Вымывающее действие слез, слюны, мочи способствует защите эпителия от повреждений, вызванных в результате деятельности патогенных агентов. Во многих биологических жидкостях, секре-тируемых организмом, содержатся вещества, обладающие бакте­рицидными свойствами (например, соляная кислота в желудоч­ном соке; спермин и цинк в сперме; лизоцим в слезах, носовых выделениях и слюне; лактопероксидаза в молоке).

Благодаря микробному антагонизму, связанному с присутстви­ем нормальной бактериальной флоры, угнетается рост ряда потен­циально патогенных бактерий и грибов вследствие конкуренции за необходимые питательные вещества или выработки некоторых веществ (кислоты). Например, патогенная флора влагалища угне­тается молочной кислотой, которая вырабатывается одним из ви­дов бактерий — комменсалов, метаболизирующих гликоген, сек-ретируемый клетками эпителия влагалища. Защитной является и фильтрационная функция лимфатических узлов.

Если же микроорганизмы все же преодолевают эти естествен­ные барьеры макроорганизма, то в действие вступают следующие два способа защиты: разрушение их ферментами либо «поедание» клетками — фагоцитоз.
^

3.2. СИСТЕМА ФАГОЦИТОВ


И. И. Мечников определил, что ее представляют два типа кле­ток: микрофаги (полиморфноядерные нейтрофилы) и макрофаги, трансформирующиеся из моноцитов, которые задерживаются в тканях. Они образуют систему мононуклеарных фагоцитов.

Всем фагоцитам присущи следующие функции: миграция и хе­мотаксис; адгезия и фагоцитоз; цитотоксичность; секреция гидро-лаз и других биологически активных веществ.

Защитную функцию клеток, способных поглощать и перевари­вать микробы, впервые показал И. И. Мечников и назвал это яв­ление фагоцитозом.

Различают фагоцитоз завершенный и незавершенный. Фагоци­тарная реакция осуществляется поэтапно. ^ Завершенный фагоцитоз, заканчивающийся полным разрушением микроорганизма, вклю­чает четыре стадии (рис. 4.10):

I. Положительный таксис, или приближение фагоцита к ми­кробу;

И. Адгезия, или прилипание фагоцита к микробу;





  1. Рис. 4.10. Стадии завершенного фагоцитоза

    Впячивание наружной мембраны фагоцита с последующим
    образованием фагосомы и ее слияние с лизосомой;

  2. Инактивация и разрушение микробов в фаголизосоме,
    проявляющиеся набуханием, фрагментацией и лизисом с пол­
    ной деградацией до аминокислот и низкомолекулярных соедине­
    ний. Если микробные антигены разрушаются частично, вслед за
    фагоцитозом начинается антителообразование.

Некоторые виды микроорганизмов и особенно поглощенные вирусы проявляют большую устойчивость к лизосомальным анти­микробным веществам или даже размножаются внутри фагоцита. Такой незавершенный вид фагоцитоза чаще наблюдается в нейтро-филах и заканчивается их гибелью или фагоцитированные микро­бы выталкиваются из них. Нередко гранулоциты с размноживши­мися в них бактериями становятся объектом фагоцитоза для мак­рофагов. Следует подчеркнуть, что в отличие от нейтрофилов, ко­торые поглощают и переваривают в основном истинных бактерий, макрофаги фагоцитируют спирохеты, актиномицеты, грибы, про­стейшие, вирусы, атрофирующиеся, омертвевшие или злокачест­венные перерожденные клетки.

Нейтрофилы (полиморфноядерные лейкоциты) — ко-роткоживушие клетки, способные к хемотаксису и фагоцитозу. В нейтрофилах различают три типа гранул:

первичные, азурофильные, содержат набор разнообразных гидро-лаз —A,D,E катепсины, 5-нуклеотидазу, бета-галактозидазу, арил-сульфатазу, бета-глюкуронидазу, эластазу,.коллагеназу, катионные белки, миелопероксидазу, лизоцим, кислые мукополисахариды;

вторичные «специфические» гранулы содержат лактофер-рин, лизоцим, щелочную фосфатазу, белок, связывающий ви­тамин В12;

третичные гранулы похожи на обычные лизосомы и содержат кислые гидролазы.

Таким образом, гранулы нейтрофилов содержат набор фермен­тов, достаточный для деградации всех или многих липидов, поли­сахаридов и белков чувствительных бактерий, что приводит к их значительному повреждению в считанные часы.

Моноциты и макрофаги отличаются высокой фа­гоцитарной активностью. Продукты этих клеток — монокины — действуют на многие клетки других типов. Моноциты могут участвовать как в воспалительных, так и противовоспалительных процессах: способствовать созреванию предшественников лейко­цитов, влиять на систему комплемента, свертывание крови, обмен кининов, служить основным источником метаболитов арахидоно-вой кислоты, а также оказывать токсическое действие на опухоле­вые клетки и микроорганизмы.

Макрофаги играют важную роль в формировании устойчи­вости организма к инфекции. Они обладают фагоцитарной актив­ностью, значительной подвижностью и способностью образовы­вать токсические метаболиты кислорода, а также набором мощ­ных гидролитических ферментов. В отличие от нейтрофилов у макрофагов замедленная, но более продолжительная реакция на внешние стимулы. Они способны использовать фаголизосомы повторно, секретировать нелизосомальные белки, У них выше способность к пиноцитозу. Макрофаги быстрее реконструируют плазматическую мембрану, но характер их бактерицидного дей-


ствия во многом сходен с таковым у нейтрофилов: включает интернализацию микроорганизмов, слияние фагосом с лизосо-мами и активацию метаболитов кислорода при уничтожении микроорганизмов.

Между моноцитами и макрофагами обнаружено много разли­чий: прежде всего эти клетки отличаются по ферментативной ак­тивности и способности к фагоцитозу. При дифференцировке мо­ноцитов в макрофаги у них исчезают азурофильные гранулы, в ре­зультате более заметными становятся лизосомы, содержащие гид­ролитические ферменты. Поверхность макрофагов более склад­чатая и на ней больше рецепторов для Ig и комплемента.

Макрофаги (и, в меньшей степени, неактивированные моно­циты) продуцируют разнообразные соединения: компоненты комплемента, пропердин, факторы В и D. Гепатоциты произ­водят многие из этих белков в значительно больших количе­ствах, однако макрофаги обеспечивают локальный синтез бел­ков комплемента в экссудатах.

Макрофаги продуцируют растворимые белки — монокины. К ним относятся: интерлейкин-1 (IL-1), лейкоцитарный пиро-ген; фактор, активирующий фибробласты и пролиферацию глад-комышечных клеток, интерферон; факторы, стимулирующие про­лиферация клеток капилляров; факторы, влияющие на образо­вание колоний гранулоцитов, эритроцитов, макрофагов, мега-кариоцитов; фактор роста Т-клеток; фактор дифференцировки В-клеток; белки, убивающие опухолевые клетки; белок, супресси-рующий Т> и В-клетки.

Макрофаги продуцируют большое количество биологически активных веществ (БАВ): простагландины (PGE2), тромбоксан 2, лейкотриены В и С, причем в значительно больших количествах, чем нейтрофилы. Миелопероксидаза нейтрофилов и макрофагов эффективно уничтожает микроорганизмы, может играть сущест­венную роль в уничтожении агентов, вызывающих хронические гранулематозные инфекции.

Пероксидаза в нейтрофильных лейкоцитах была впер­вые обнаружена в 1941 г. К. Агнером. Поскольку по своим свой­ствам эта пероксидаза несколько отличалась от остальных живот­ных пероксидаз и найдена пока только в нейтрофилах, моноцитах и макрофагах, она впоследствии получила название «миелоперок­сидаза» (МПО). Методом гель-фильтрации определена молеку­лярная масса миелопероксидазы: у собаки— 149000 (К. Агнер, 1958). МПО — это важный компонент внутрилейкоцитарной мик-робоцидной системы нейтрофильных гранулоцитов. Это железо­содержащий белок, изоэлектрическая точка которого находится в области рН 10,0. Способность МПО окислять пероксидом во­дорода субстраты различной химической природы и продуциро­вать альдегиды, хлорамины, синглетный кислород, свободные ра­дикалы и другие высокоактивные антимикробные агенты является

биохимической основой иммунитета, главная роль в котором при­надлежит нейтрофильным лейкоцитам.

Еще в 1931 г. было доказано, что пероксидаза и пероксид во­дорода значительно усиливают антимикробную активность ряда фенолов посредством перевода их в соответствующие хиноны. В дальнейшем выяснили, что миелопероксидаза в присутствии пероксида водорода и окисляемого кофактора действует против различных микроорганизмов и их токсинов. Доказано, что миело­пероксидаза, пероксид водорода и окисляемый кофактор состав­ляют антимикробную систему в лейкоцитах. В системе миело­пероксидаза—пероксид водорода — галоген (кроме фтора) ионы галогенов взаимозаменяемы.

Система МПО — Н2О2 — йодид. Из всех галогенов йод счита­ется наиболее эффективным кофактором при осуществлении миелопероксидазной системной антимикробной функции. Для эквивалентного антибактериального эффекта требуется или одна часть йодида, или 15 частей бромида, или 200 частей хлорида. Ан~ тимикробным действием обладает не только вся система МПО — Н2О2 — галоген в целом, но и некоторые ее компоненты. Агнер (1947) первым установил, что эта система йодинирует молекулы бактериальных ядов при их обеззараживании. Клебанов (1967) до­казал, что антимикробная система МПО — Н2О2 — йодид обус­ловлена йодинацией микроорганизмов. Была доказана зависи­мость фиксации йодида фагоцитами, поглощающими бактерии, от содержания в них миелопероксидазы. Моноциты способны фиксировать йодид, но нейтрофилы, где содержится наибольшее количество миелопероксидазы, наиболее эффективно фиксируют йодид. При высоких бактериальных нагрузках активность нейтро-филов выше, чем у моноцитов. Полная антибактериальная функ­ция системы МПО — Н2О2 — йодид соответствует антивирус­ной и антигрибной.

Система МПО — Н2О2 — хлорид. О переокислительном окис­лении хлорида впервые сообщил Агнер (1941). В настоящее время доказана активность системы МПО — Н2О2 — хлорид против бакте­рий, микоплаз и вирусов. Антимикробная активность этой системы осуществляется за счет переокислительного дезаминирования и де-карбоксилирования микроорганизмов. МПО катализирует образо­вание НОС1 из С1 и Н2О2. НОС1 реагирует с аминокислотами с об­разованием хлораминов. Хлорамины нестабильны и распадаются на NH3, СО^ С1 и соответствующие альдегиды.

Существует определенная взаимосвязь и взаимодействие всех систем, выполняющих функции борьбы с чужеродными агентами. Так, продукты деградации JgG стимулируют увеличение уровня активности МПО. Агрегаты иммуноглобулинов, образующиеся при их окислительной деструкции, стимулируют дыхательный взрыв и секреторную дегрануляцию нейтрофилов с выделением МПО. Аг­регаты оказывают и прямое воздействие на нейтрофилы, а также активируют систему комплемента. Последнее определяет образо­вание стимуляторов дегрануляции этих клеток.

На основании данных о способности МПО вызывать секрецию содержимого тромбоцитов высказывается предположение об учас­тии МПО в процессах межклеточной коммуникации. Следует от­метить, что пероксидаза слюны обладает способностью стимули­ровать митогенную активность лимфоцитов.

МПО играет роль в регуляции дыхательного взрыва. Один из продуктов миелопероксидазной реакции тормозит НАД-Н-ок-сидазу, ответственную за образование супероксидного радика­ла. Такой вывод сделан на основании сопоставления скорости генерации О2 и Ог на препаратах нейтрофилов человека, инку­бируемых в присутствии и в отсутствие антимиелоперокси-дазных антител.

МПО нейтрофилов может служить фактором усиления анти­микробного потенциала мононуклеарных фагоцитов клетки второй очереди при воспалительном процессе, а также и факто­ром потенцирования протеолиза деструктивных процессов в тканях. Так, она инактивирует ингибитор сериновых протеи-наз — ос-1-антитрипсин и SH-протеиназ путем тиолдйсульфид-ного обмена и в то же время обладает способностью активи­зировать латентные формы металлопротеиназ нейтрофилов — коллагеназы и желатиназы.

Набор протеолитических ферментов макрофагов похож на соответствующий набор нейтрофилов, но активность протеаз в них существенно выше. Одним из ферментов, характерных для макрофагов, является ангиотензинконвертаза, катализирующая превращение ангиотензина-I в ангиотензин-Н, реакцию инакти­вации брадикинина.

На макрофагах имеются рецепторы фибрина и продуктов дегра­дации фибрина, способствующие более тесному взаимодействию клеток с продуктами свертывания. Макрофаги продуцируют замет­ное количество фибронектина, участвующего в клеточной адгезии, распластывании и движении клеток, а также содержат центры свя­зывания коллагена и клеток, обладающих значительной хемотакси-ческой активностью для фибробластов, что играет важную роль при восстановлении поврежденных тканей.
1   2   3   4   5   6   7   8

Ваша оценка этого документа будет первой.
Ваша оценка:

Похожие:

Физиология иммунной системы icon Роль иммунной системы в патогенезе рака молочной железы при комбинированном лечении 14. 03. 03 патологическая

Физиология иммунной системы icon V-й симпозиум с международным участием Физиология иммунной системы. Перспективные подходы к диагностике

Физиология иммунной системы icon Вопросы для теоретической части экзамена по клинической иммунологии для студентов 4 курса медико-биологического
Внутриутробный период развития иммунной системы. Особенности строения и функционирования иммунной...
Физиология иммунной системы icon 6. Болезни сердечно-сосудистой системы, иммунной системы и системы крови Заболевания сердечно-сосудистой

Физиология иммунной системы icon Остановить спид. Выполнить обещание вич-инфекция это тяжелое инфекционное заболевание, характеризующееся
Вич-инфекция – это тяжелое инфекционное заболевание, характеризующееся поражением иммунной системы...
Физиология иммунной системы icon Панкратов О. В. Динамика некоторых показателей иммунной системы у беременных, больных сифилисом //

Физиология иммунной системы icon Биохимия иммунной системы

Физиология иммунной системы icon Особенности иммунной системы у подростков

Физиология иммунной системы icon Обобщенная модель искусственной иммунной системы

Физиология иммунной системы icon Летучие соединения в моче самцов мышей как индикаторы функционального состояния иммунной и репродуктивной

Разместите кнопку на своём сайте:
Медицина


База данных защищена авторским правом ©MedZnate 2000-2016
allo, dekanat, ansya, kenam
обратиться к администрации | правообладателям | пользователям
Медицина