Глава 1.Биохимия иммунной системы
1.1.Иммунитет
Иммунитет можно определить как способность организма идентифицировать, нейтрализовать и удалять чуждые структуры с целью сохранения собственной целостности.
Эту способность организма обеспечивает иммунная система, которая возникла в процессе эволюции из клеток двух типов: лимфы и макрофагов. Они принимают участие в работе иммунной системы сами по себе (клеточный иммунитет) или вместе с белковыми продуктами собственной активности, называемыми антителами (гуморальный иммунитет). Нельзя упускать из виду тот факт, что иммунная система функционирует как единое целое, так что разделение на два типа имеет лишь педагогическое значение.
Иммунная система состоит примерно из 1012 лимфоцитов и 1020 молекул иммуноглобулинов, и их главная задача заключается в том, чтобы идентифицировать антигены, т.е. молекулы и клетки, которые не принадлежат организму или образовались из собственных молекул и клеток в результате их физиологического или патологического изменения. В зависимости от их связи с организмом различают антигены от животных того же вида (аллогенные; ранее их называли гомологическими или изоантигенами), антигены от животных другого вида (экзогенные, ранее их называли гетерологическими) и, наконец, искусственные, или синтетические, антигены. Аллогенные антигены, произведенные самим организмом, но затем модифицированные, можно назвать аутологическими.
После идентификации антигена иммунная система должна нейтрализовать его и удалить. Это происходит двумя путями: с помощью специальных клеток (так называемых Т-клеток), обладающих цитотоксическим действием, и их продуктов (лимфокинов) или с помощью антител (Ат), которые производятся В-клетками. Для обоих способов характерна специфичность в отношении структуры, чуждой для тела.
Нейтрализацию и удаление чуждых структур осуществляют также гуморальные факторы, называемые комплементом и пропердиновой системой. Фагоцитоз и внутриклеточное разрушение антигенов производят макрофаги. Работа всех вышеперечисленных компонентов иммунной системы, которые образуют так называемую иммунологичесую сеть, регулируется таким образом, что иммунная реакция наступает в нужный момент, направлена на определенный антиген, адекватна и ограничена во времени. Отсутствие одного из этих качеств вызывает нарушения в организме и серьезные заболевания, угрожающие самому его существованию. Наиболее серьезны следующие нарушения.
Гиперчувствительность является следствием избыточной иммунной реакции. Она может быть раннего и замедленного типа.
Противоположностью повышенной чувствительности являются иммунотолерантность и иммунодефицитность. В первом случае отсутствует селективная иммунная реакция, а во втором отсутствуют, или повреждены некоторые компоненты иммунной системы. И наконец, существуют аутоиммунные заболевания, при которых аллогенные антигены превращаются в аутологические и иммунная система организма начинает работать против себя.
1.2.Антигены^
Антигены — это вещества, которые проникают (главным образом парентерально) в организм и вызывают иммунную реакцию. Чаще всего, это высокомолекулярные соединения (белки, полисахариды). Однако антигенами могут быть и низкомолекулярные вещества, называемые гаптенами, такие, как лекарственные препараты и их метаболиты, особенно после присоединения в организме к белкам-носителям. Часть молекулы антигена, определяющую иммунную реакцию, называют антигенной детерминантой (или гаптеном). Обычно она имеет жесткую структуру и содержит ароматические аминокислоты, заряженные группы и олигосахариды. На антигене могут быть группы одного или нескольких типов, т.е. он может быть моно- и поливалентным. Антиген может иметь несколько групп каждого типа. Каждая детерминанта вызывает образование антител, которые тоже бывают моно- и поливалентными. Часть искусственных антигенов была получена синтетически и использована для изучения антигенности и образования антител (пример на Рис. 11 .1).
1.2.2.

Рис. 11.1. Строение искусственного антигена
Природные антигены
К природным антигенам относятся все белки организма, которые являются выражением генетической информации. Таким образом, сюда относятся белки биологических жидкостей, клеточных структур, и в первую очередь плазматических мембран. Примером служат групповые антигены крови (Рис. 11 .2). Все они являются производными основной структуры, называемой глобозидом (продукт гена Н). В ней есть концевой остаток галактозы, к которому могут присоединяться сахара под действием специфической гликозилтрансферазы, являющейся выражением гена, соответствующего данной группе крови. Так, ген Н контролирует синтез фукозилтрансферазы, ген IА — синтез N-галактозаминилтрансферазы, а ген IВ — синтез галактозилтрансферазы. Другие природные антигены происходят от основного комплекса гистосовместимости, который расположен на хромосоме VI. К его основным компонентам относятся гены, отвечающие за систему антигенно в лейкоцитов человека и расположенные в локусах А, В и С. Локусы А и В определяют по 15 специфичностей, а локус С — пять. Каждый локус содержит аллели, обозначенные индексом w и числовым кодом.

Рис. 11.2. Групповые антигены крови Выражение генов А, В и С представляет собой трансмембранный гликопротеин с молекулярной массой 43000, который нековалентно связан с
2-микрогло-булином (молекулярная масса 12000), локализованным периферийно. Этот белок кодируется другим геном. Антигены лейкоцитов человека играют важную роль при трансплантации органов, и это обстоятельство положило начало изучению их с биохимической точки зрения
^
Примерами чужих антигенов служат два белка вируса гриппа, расположенные на поверхности вириона — нейраминидаза и гемагглютинин. Они проникают в организм и вызывают образование специфических антител.
1.3.Иммуноглобулины^
Антитела к различным антигенам представляют собой довольно однородную группу белков, которые при электрофорезе при рН 8,6 образуют так называемую зону
-глобулинов. Отдельные компоненты этой смеси были выделены и названы иммуноглобулинами G, А, М, D и Е, сокращенно IgG, IgA, IgM, IgD и IgE. Впоследствии обнаружили, что молекула каждого иммуноглобулина представляет собой тетрамер, образованный четырьмя полипеп-тидными цепями. Эти цепи попарно идентичны и называются легкой L- (существует в двух видах — и ) и тяжелой Н-цепями (пять видов — , , , и ). Классификация иммуноглобулинов основана на типе тяжелой цепи. В зависимости от вида Н-цепь содержит разное число аминокислотных остатков (их последовательность установлена) и, следовательно, имеет различную молекулярную массу (50000-70000), а для L-цепей — 22500. Иммуноглобулины существуют в виде мономеров, димеров и тримеров (IgA) или пентамеров (IgM). Их состав, содержание в сыворотке и полупериод жизни приведены в таблице.
Табл. 11.1. Состав некоторые свойства иммуноглобулинов
Тип
|
Состав
|
Молекулярная масса·10–3
|
Содержание в сыворотке крови, г/л
|
Полупериод жизни, сут
|
IgC
|
22
22
|
143–149
|
9–15
|
23
|
IgM
|
22)5
22)5
|
800–950
|
0.7–1.8
|
5.1
|
IgA
|
22)1–3
22)1–3
|
158–162
|
1.5–2.6
|
5.8
|
IgD
|
22
22
|
175–180
|
0.03
|
2.8
|
IgE
|
22
22
|
185–190
|
0.05
|
2.5
|
^
Химическая структура иммуноглобулинов изучена достаточно подробно (Рис. 11 .3). Легкая цепь состоит из 220 аминокислот, а тяжелая из 450-575. Анализ аминокислотной последовательности обнаружил, что некоторые участки цепей вариабельны (VL и VH), т.е. имеют разную аминокислотную последовательность, а некоторые постоянны (CL и СH 1-3). Из схемы видно, что отдельные участки цепей имеют форму внутренних петель из 60-70 остатков, соединенных дисульфидной связью. В пространстве они образуют два антипараллельных слоя со складчатой структурой. Центры связывания антигенов (по два на молекулу) расположены на участках VH и VL. Эти участки содержат так называемые гипервариабельные сегменты, которые и обеспечивают комплементарность антигену. Взаимодействие имеет скорее всего гидрофобный характер (по-видимому, с участием водородных связей), поскольку в зоне контакта преобладают гидрофобные аминокислоты. Существование большого числа иммуноглобулинов, отличающихся только последовательностью аминокислот в вариабельных участках, по-видимому, является результатом отбора при эволюции. Константная часть молекулы иммуноглобулинов (Fc) обеспечивает одинаковую судьбу комплекса после связывания со специфическими антигенами. Методом рентгеноструктурного анализа установлено, что участки VH и VL сравнительно подвижны и что стабилизация структуры происходит только после присоединения антигена.
1.3.3.

Рис. 11.3. Структура иммуноглобулинов Образование иммуноглобулинов
На клеточном уровне
Для синтеза иммуноглобулинов необходима согласованная активность клеток трех типов — Т-лимфоцитов,
В-лимфоцитов и макрофагов. Все они имеют ряд рецепторов на плазматической мебране. Клетки Т- и В-лимфоцитов содержат рецепторы иммуноглобулинов, и их специфичность различна. Кроме того, на них есть свободный рецептор для фрагмента Fc. Иммуноглобулины IgM и IgG с разными вариабельными участками VH и VL связываются В-клетками. Каждая клетка образует лишь один строго определенный тип молекул иммуноглобулина. Макрофаги имеют рецепторы для фрагмента Fc и комплемента. Считается, что антиген, попавший в организм, помечается специфическим антителом и образовавшийся комплекс присоединяется своим концом Fc к Т-клетке или макрофагу (иногда антиген прямо связывается с поверхностью Т-клетки, а лишь затем с макрофагом, но чаще он присоединяется в виде комплекса с антителом к макрофагу без участия Т-клетки). Роль макрофагов состоит в превращении антигена в иммуноген, т.е. в вещество, способное индуцировать образование антител. Механизм этого процесса и природа иммуногена пока неизвестны. После получения иммуногенного стимула от макрофага В-клетки начинают размножаться и дифференцироваться и через стадию лимфобластов превращаются в плазматические клетки, которые и служат источником иммуноглобулинов.
На субклеточном уровне
Существуют две теории, касающиеся механизма образования иммуноглобулинов. ^ предполагает, что в организме есть достаточное количество предсуществующих В-лимфоцитов,. способных обеспечить синтез большого количества иммуноглобулинов с различными участками VH и VL. Антиген связывается с лимфоцитом, рецептор которого лучше всего соответствует ему, и этот лимфоцит начинает размножаться и превращаться в плазматическую клетку. Инструктивная теория предполагает, что каждый лимфоцит независимым образом синтезирует большое количество не связанных дисульфидными мостиками L- и Н-цепей с различными участками VH и VL. S—S-связи образуются как только антиген (точнее, иммуноген) вызовет комплементарную пространственную ориентацию нужных участков тяжелых и легких цепей внутри клетки. Образование дисульфидных мостиков может катализировать тиолдисульфидтрансгидрогеназа в присутствии глутатиона. После образования тетрамера с антигеном (иммуногеном), фермент высвобождается и процесс повторяется.
^
1.4.1.Преципитация и агглютинация
Взаимодействие антигена с антителом имеет ряд особенностей, связанных с валентностью антитела. Молекула антитела содержит два центра связывания и формально двухвалентна. Поэтому она может взаимодействовать с двумя детерминантами, принадлежащими двум разным молекулам антигена. Если антиген является белком, то его размеры в первом приближении такие же, как у антитела. При примерном равенстве их концентраций образуется структура с множеством внутренних контактов, растворимость уменьшается и образуется осадок. Теоретически похожая ситуация возникает в том случае, когда антигеном являются поверхностные структуры клеток. В этом случае, однако, сказывается различие размеров двух взаимодействующих компонентов. На поверхности клетки может находиться большое количество детерминант, которые связывают такое же количество антител. Если при этом происходит экранирование отрицательных зарядов на поверхности клеток, благодаря которым они отталкиваются друг от друга, то клетки начинают слипаться (агглютинировать).
Количественное описание реакции антигена с антителом
Взаимодействие антиген-антитело лучше всего прослеживается in vitro в реакции преципитации. Если в серию пробирок с возрастающей концентрацией антигена прибавить одинаковое количество антитела, то преципитация произойдет лишь в пробирках с благоприятным соотношением между антигеном и антителом, т.е. в узком диапазоне концентраций антигена. При избытке одного из компонентов осадок не образуется. Определение титра служит основой количественных исследований в иммунологии. Полезно помнить, что все лабораторные методики, связанные с образованием осадка (обычная и двойная диффузия, иммуноэлек-трофорез), следует применять при оптимальных концентрациях обоих реагирующих соединений.
^
Сыворотка крови содержит группу белков с различными свойствами и размерами, образующих при последовательной ассоциации комплекс, называемый активным комплементом (С). Эта структура отвечает за уничтожение сенсибилизированных эритроцитов и грамотрицательных бактерий. Комплемент содержит 11 различных белков плазмы крови (С1–С9, причем С1 состоит из трех белков: С1q С1r и Cls). В присутствии Са2+ С1 присоединяется к антителу, образовавшему комплекс с антигеном (Аг–Ат). Прочность связи с IgM выше, чем с IgG, тогда как IgA, IgD и IgE вовсе не присоединяют комплемент. При связывании С1 появляется протеазная активность и становится возможным присоединение С4. Оно протекает так, что сначала С4 расщепляется на две части, С4а и С4b, из которых первая деградирует, а вторая образует комплекс с С1. После этого связывается компонент С2. Он также расщепляется на активный фермент С2a («конвертазу») и остаток С2b, который деградирует. Комплекс С1·С4b·С2a присоединяет компонент СЗ, после чего он также распадается на С3a (имеющий анафилаксическую функцию — способность высвобождать гистамин из гранул разнообразных клеток) и С3b. Так образуется ассоциат С1·С4b·С2а·СЗb с протеазной активностью. Входящий в его состав компонент СЗb может взаимодействовать с мембранами микробов. Такое взаимодействие, как бы коротко оно ни было, вызывает присоединение лейкоцитов и бактериальный фагоцитоз. Так же связывается С5, который распадается на анафилаксин С5а и присоединяемую часть С5b. После последовательного связывания С6 и С7 образуется комплекс МС5b,6,7 (символом М обозначена его часть, способная взаимодействовать с плазматической мембраной). По данным электронной микроскопии механизм взаимодействия представляет последовательное внедрение отдельных белков в липидые слои мембраны. Внедрение облегчается за счет ассоциации с компонентами С8 и С9. Первый из них придает клетке способность к лизису, а благодаря второму этот процесс очень ускоряется. При лизисе комплекс (МС5b-9) образует множество круглых отверстий в мембране, которые пронизывают ее насквозь и образуют каналы для входа Na+ и Са2+ и выхода К+. Это приводит к набуханию, а затем разрыву клетки.
Другой механизм лизиса клеток, основан на работе пропердиновой системы. Он функционирует даже в отсутствие антител, поэтому может быть использован тогда, когда антитела не образуются. Пропердиновая система состоит из трех частей: пропердина (Р, одного или нескольких), богатого глицином 2-гликопротена (В) и протеазы (D), которая присутствует в виде профермента. Пропердин образован несколькими субъединицами, активируемыми зимозаном (дрожжевым полисахаридом), эндотоксином (бактериальным липосахаридом) и инулином. Активированный пропердин активирует компонент СЗ комплемента, который приобретает свойства «конвертазы» (D). Фермент воздействует на фактор В, тот расщепляет СЗ на C3a и СЗb. Последний связывает С5-С9, как описано выше. Пропердиновая система, для которой не нужны антитела, по-видимому, возникла раньше комплемента и обнаружена даже у беспозвоночных.
|