|
Скачать 2.43 Mb.
|
^
Источники загрязнения атмосферы В проблеме техногенного изменения окружающей среды первостепенное значение имеет загрязнение атмосферы. Это связано с приоритетным значением воздушной среды для жизнедеятельности подавляющего числа организмов. Содержание в воздухе различных веществ, в том числе токсичных, приводит к накоплению их, в частности, в человеческом организме. Действительно, в течение суток человек потребляет около 20 м3 (15 кг) воздуха. Во-вторых, из-за высокой скорости диффузных процессов в атмосфере, а также переноса воздушных масс выбросы вредных веществ могут в течение короткого времени перемещаться на большие расстояния в сотни и тысячи километров, что приводит к глобальному загрязнению почвы, растительности, поверхностных вод, морей и океанов. Важное значение атмосферных загрязнений сказывается также на трансформации солнечного излучения, причём в этом случае решающее значение могут приобрести не основные загрязнители, а такие, как метан, фреоны. Основными источниками антропогенного загрязнения атмосферы являются производители энергии, чёрная и цветная металлургия, химическая и нефтехимическая промышленность, автотранспорт, предприятия строительных материалов. Классификация выбросов по составу проводится в соответствии с ГОСТ 17.2.1.01–76. Выбросы в атмосферу из источников загрязнения характеризуются по четырём признакам:
Например, выброс из смеси оксида углерода с массой 60 кг/ч и паров ароматических углеводородов с массой 5 кг/ч индексируется как А.02.0.3.А15.0.2. Контроль загрязняющих веществ в атмосфере Для определения содержания вредных веществ в воздухе используют преимущественно химические неавтоматические методы. Эти методы основаны на том, что загрязнённый воздух пропускают через определённый реагент, адсорбирующий контролируемые вещества, а затем эти вещества анализируются. Переход к непрерывному контролю уровней загрязнения атмосферы возможен лишь с помощью автоматических газоанализаторов. Их применение позволит существенно увеличить объём информации и обоснованно делать вывод о закономерностях изменения концентраций загрязняющих веществ, организовать оперативный контроль загрязнения атмосферы и эффективнее проводить мероприятия по уменьшению отрицательного воздействия на окружающую природную среду. Автоматические газоанализаторы целесообразно сочетать с дистанционными методами определения загрязняющих веществ. В основе большой группы этих методов лежит использование различных параметров электромагнитного излучения. По физическим принципам принято выделять два основных способа: измерение излучения (собственного или вынужденного) исследуемых атомов и молекул и измерение ослабления излучения от естественных или искусственных источников при прохождении через вещество. При этом линии спектра являются признаком атомов и молекул, и по ним производится идентификация вещественного состава. Интенсивность линий служит мерой количества или концентрации вещества. Для контроля чистоты атмосферы рекомендуются следующие методы:
^ Возможность влияния атмосферных загрязнений на окружающую среду и условия комфорта людей, возможность круглосуточного и длительного воздействия на население определили особенности принципов, критериев и методов гигиенической оценки веществ в атмосфере населённых мест. Нормирование допустимого содержания химических факторов основано на представлении о наличии порогов в их действии. При нормировании используют принцип лимитирующего показателя. Согласно этому принципу нормирование проводится по наиболее чувствительному показателю. Например, если запах вещества ощущается при концентрациях, которые не оказывают вредного влияния на человека и окружающую среду, то нормирование производят с учётом порога обонятельного ощущения. Если же вещество оказывает на объекты окружающей среды (животных или растения) вредное действие в меньших концентрациях, чем на организм человека, то при нормировании исходят из действия вещества на природные объекты. Нормативные величины ПДК были установлены по степени их осреднения: мгновенные, среднесуточные, среднемесячные, среднегодовые. Обоснование максимально разовой ПДК загрязняющих веществ осуществляется в эксперименте с людьми, кратковременно (520 мин.) вдыхающими воздух с содержанием малых концентраций изучаемого вещества, безопасных для организма человека. Для установления среднесуточных ПДК проводят токсикологический эксперимент на животных. Результаты, полученные в опытах на животных, переносят на людей. Полученные данные свидетельствуют о том, что при длительном воздействии малых концентраций загрязняющих атмосферу веществ (в течение 3…4 мес.) в организме животных развиваются неспецифические изменения со стороны центральной нервной системы, системы крови, ферментных систем, системы гормонов. ^ Вредные вещества, выбрасываемые в атмосферу из различных промышленных источников в виде газов или аэрозолей, вследствие диффузии перемешиваются с чистым воздухом до полного рассеивания. Этот процесс рассеивания вредных веществ в атмосфере достаточно хорошо изучен, и коэффициенты разбавления примеси вредных веществ в атмосфере могут быть рассчитаны с достаточной точностью для всех видов источников и типичных метеорологических условий. Предельно допустимый выброс (ПДВ, г/с) определяется (в г/с) как произведение коэффициента метеорологического разбавления Кр (м3/с) на значение допустимой концентрации (ПДК, мг/м3) в атмосфере: ПДВ = Кр 10-3 (ПДК – Сф), где Сф – фоновая концентрация вещества, для которого определяется ПДВ. При расчёте ПДВ и Кр учитывают следующие параметры:
Кроме фоновых концентраций загрязняющих веществ, необходимо учитывать возможные выбросы при развитии данного и строительстве новых предприятий. Если в воздухе населённых пунктов (городов, рабочих посёлков) концентрации вредных веществ превышают предельно допустимые, а ПДВ в настоящее время не может быть достигнут, вводится поэтапное уменьшение выбросов вредных веществ от действующих предприятий до значений, соответствующих нормам качества воздуха или до полного предотвращения выбросов. На каждом этапе до обеспечения ПДВ устанавливают временно согласованные выбросы (ВСВ) вредных веществ на уровне выбросов предприятий с наиболее совершенной технологией производства, аналогичных по мощности и технологическим процессам. Значения ВСВ выше расчётных значений ПДВ и допускаются временно лишь для действующих предприятий. Для проектируемых предприятий ВСВ не устанавливаются. ^ Санитарными нормами проектирования промышленных предприятий установлено, что предприятия, являющиеся источниками выделения вредных и неприятно пахнущих веществ в окружающую среду, следует отделять от жилой застройки санитарно-защитными зонами. Санитарно-защитной зоной (СЗЗ) следует считать пространство между промышленной площадкой, на границе которой должны соблюдаться концентрации, не превышающие 0,3 ПДК вредных веществ для воздуха рабочей зоны, и границей, на которой обеспечивается соблюдение ПДК вредных веществ в атмосферном воздухе населённых мест. Границы санитарно-защитной зоны устанавливают:
При установлении границ санитарно-защитной зоны нужно исходить из того, что границы этих зон устанавливают при одном источнике выброса – непосредственно от этого источника; при группе источников, сводящихся в одну точку (центр их группирования), – от этой точки (центра); при группировании рассредоточенных по территории предприятия источников (не сводящихся в одну точку) – от точки, от которой производится расчёт суммарной концентрации вредных веществ. СЗЗ не может рассматриваться как резервная зона предприятия и использоваться для расширения промышленной площадки. Вместе с тем эта зона не может служить и территорией перспективного развития жилой застройки населённого пункта. В качестве дополнительной меры обеспечения безопасности населения для уменьшения числа подвергаемых действию вредных химических веществ людей специальными решениями устанавливаются зоны разрыва между промышленными площадками предприятий с особо опасными выбросами и крупными населёнными пунктами. Такое же решение может приниматься и для предприятий, на которых имеется определённая вероятность загрязнения среды при авариях, т. е. предприятий с повышенным экологическим риском. ^ При эксплуатации предприятий чистоту воздушного бассейна (в соответствии с требованиями «Санитарных норм проектирования промышленных предприятий») можно поддерживать следующим комплексом мероприятий:
Одним из основных способов снижения воздействия промышленного производства на воздушную среду является повышение эффективности очистки и обезвреживания воздушных выбросов. Существуют различные схемы классификации процессов очистки и обезвреживания выбросов в воздушную среду. Рассмотрим процессы пылеочистки и очистку выбросов от газообразных компонентов. Пылеулавливание. Пылеулавливанием называются операции улавливания пыли в местах её выделения и скопления посредством местных отсосов вытяжной вентиляционной системы (зонтов, рукавов, кожухов, вытяжных шкафов) с последующей очисткой запылённого воздуха (газов) в аппаратах-пылеуловителях. Очищенный от пыли воздух (газы) выбрасывается в атмосферу, подвергается дальнейшей очистке от газовых составляющих либо снова направляется полностью или частично в технологический процесс для повторного использования. Существуют две основные системы пылеулавливания: технологическая и санитарная. Первая предназначена для очистки от пыли воздуха или газов, используемых для технологических целей (например, пневмотранспорт), вторая – для защиты воздушного бассейна от загрязнения вредными химическими веществами, радионуклидами, биологически активными соединениями. Современные аппараты обеспыливания воздуха (газов) можно подразделить на четыре группы:
Механический (сухой) способ реализуется через следующие воздействия и соответствующие аппараты:
аппараты – пылеосадительные камеры;
аппараты – инерционные жалюзийные пылеуловители, ротоклоны;
аппараты – центробежные пылеуловители (простые и батарейные циклоны). Механический (мокрый) способ реализуется следующим образом:
аппараты – мокрые циклоны и циклоны-промыватели, центробежные скрубберы, плёночные пылеуловители, скрубберы с насадкой;
аппараты – пылевые водяные и пенные фильтры. Фильтрационный сухой способ реализуется следующим образом:
аппараты – зернистые загрузки, тканевые фильтры, сетки, волокнистые фильтры. Электрический способ реализуется через:
аппараты – электростатические пылеосадители (сухие и мокрые) – электрофильтры. Газоочистка. Под газоочисткой понимаются процессы очистки газов (воздуха) от газообразных химических примесей, содержащихся в очищаемом газовом (воздушном) потоке. Для очистки (газов) воздуха от газообразных примесей наиболее часто используют три группы процессов:
Особое место занимают биологические (биохимические, биотехнологические) процессы очистки загрязнённого воздуха. Наиболее эффективно эти методы могут быть использованы для очистки воздуха от дурнопахнущих веществ. Дурнопахнущие загрязнения воздуха образуются в результате множества различных процессов. Молекулы, служащие источником зловония, часто являются органическими и поэтому могут быть подвергнуты микробной деградации. Реакторы биоочистки, используемые в настоящее время, можно подразделить на «мокрые» и «сухие». «Мокрый» реактор, или биоскруббер, работает как реактор с насадкой и противотоком жидкости (очень часто в качестве такой жидкости используют сточные воды) и загрязнённого воздуха (загрязнённого газа). Расход жидкости таков, что образующаяся биоплёнка имеет ограниченный рост. Дурнопахнущие компоненты переносятся из воздуха в жидкость, как в любом обычном скруббере, а затем окисляются микроорганизмами, формирующими биоплёнку. Основные преимущества этого процесса таковы: эффективность поглощения велика, так как биоокисление снижает концентрацию в жидкости молекул, служащих источником запаха, практически до нуля, тем самым усиливая массоперенос из газовой фазы; объём жидкой фазы, необходимой для поглощения, резко снижается; параллельно решается проблема обезвреживания и утилизации сточных вод. «Сухой» реактор представляет собой реактор с насадкой из биоактивного сорбирующего материала (например: компост, торф). Загрязнённые газы продуваются через слой насадки. Конечно, биологические методы очистки ограничены составом удаляемых (биоразлагаемых) веществ. Их нельзя в настоящее время рекомендовать для очистки воздуха от кислотосодержащих газов (хлористый и фтористый водород, диоксид серы и многие другие распространённые загрязняющие вещества). ^ Промышленные предприятия потребляют большие количества чистой (свежей) воды. Она используется в производственном цикле, на вспомогательных участках, для бытовых целей. Вода может быть средой для проведения химических реакций, охлаждающим агентом в теплообменной аппаратуре, её используют для мытья полов, оборудования. Взаимодействуя с химическими веществами в технологическом цикле, вода в конечном счёте «обогащается» и превращается в сточную воду. Выделяют следующие группы сточных вод:
Производственные сточные воды также можно разделить на две большие группы: содержащие загрязняющие вещества и условно чистые. Воды первой группы должны быть подвергнуты очистке на специальных сооружениях, так называемых станциях химической очистки. Вторая группа может быть использована в цикле оборотного водоснабжения. Воды первой группы ещё подразделяют на реакционные и промывные. Условно чистые – это в основном охлаждающие воды. По фазово-дисперсионной характеристике ПСВ делятся:
По типам производств: нефтепереработка, получение синтетических смол, получение минеральных солей, прочие производства. По загрязняющим веществам: кислоты, щёлочи, соли, масла, смолы, фенолы, ПАВ и др. Для отведения сточных вод от мест их образования существуют специальные канализационные сети (системы). Режим поступления сточных вод в наружную канализационную сеть промышленного предприятия и их количество зависят от многих условий: мощности предприятия, числа рабочих смен, вида исходного сырья, технологии производства, числа единиц производственного оборудования, а также режима его работы, удельного расхода воды на единицу продукции. Вследствие этого на предприятиях одного и того же производственного профиля сточные воды имеют неодинаковый состав и поступают в канализацию с различной степенью неравномерности. Оценивая сточные воды, сбрасываемые в водные источники, важно учитывать вид водопользования этого источника. Различают хозяйственно-питьевое и культурно-бытовое водопользование. Состояние воды оценивается тремя группами показателей: санитарно- токсикологическими, общесанитарными и органолептическими. По каждой группе выявляется критический лимитирующий показатель вредности. Общелимитирующим считается лимитирующий показатель той группы, которая является определяющей с точки зрения категории водопотребления-водопользования. В соответствии с ГОСТ 17.1.1.01–77 «Охрана природы. Гидросфера. Использование и охрана вод. Основные термины и определения» для характеристики воды используется комплексный показатель – индекс качества воды (ИКВ). ИКВ – обобщённая числовая оценка качества воды по совокупности основных показателей и видам водопользования. Наиболее разработанным является общесанитарный ИКВ – Iос. Этот показатель строится на основании экспертных процедур и равен ^ ос = 2,5…4 – пригодна для рыбохозяйственного водопользования, но требует стандартной очистки для хозяйственно-питьевого водопользования; Iос = 1,5…2,5 – пригодна для рыбохозяйственного использования, кроме использования для ценных видов рыб, для остальных видов водопользования непригодна; Iос 1,5 – непригодна для любого вида водопользования. Рассмотрим параметры, составляющие ИКВ. Для санитарно-гигиенической оценки воды наибольший вес имеет параметр коли-индекс. Он характеризует число кишечных палочек в 1 мл воды. Запах – типичный органолептический показатель, оцениваемый по 5-балльной шкале. Показатель БПК5 – биологическое (или биохимическое) потребление кислорода, т. е. израсходованное за определённый промежуток времени (5 дней) на аэробное биологическое разложение органических веществ, содержащихся в анализируемой пробе воды. Методы введения кислорода в воду различны: разбавление (кислород вводится растворённым в воде); манометрический – ввод и измерение убыли газообразного кислорода; кулонометрический – израсходованный кислород пополняется электролизом воды. Величина БПК измеряется в мг О2/л. Кислотность воды характеризуют показателем рН. Цветность воды определяют в нефильтрованной пробе воды сравнением анализируемой пробы со стандартной окраской. Взвешенные вещества, общую минерализацию и содержание хлоридов, сульфатов и др. выражают в мг/л. Наряду с показателем БПК очень широко применяется показатель химической потребности в кислороде – ХПК. Определяется окислением пробы 0,2 %-м раствором бихромата калия при кипячении. Автоматические приборы для определения ХПК сточных вод основаны на фотометрическом измерении пробы на реакцию Cr2O7-2 Cr2+3 . Специфические загрязняющие вещества (например: фенолы, соли тяжёлых металлов и др.) оцениваются значением предельно допустимой концентрации (ПДК). ^ При классификации методов очистки и удаляемых примесей в качестве классификационных признаков чаще всего используют:
Более привычная классификация: механические, физико-химические, химические, биохимические и биологические методы очистки, а также методы захоронения сточных вод. ^ Традиционно в группу методов механической очистки включают процеживание, отстаивание, осветление во взвешенном слое осадка, фильтрование, центробежные методы. ^ Высококонцентрированные и токсичные сточные воды многих отраслей промышленности, например: концентрированные рассолы установок опреснения; сточные воды, содержащие металлоорганические, в частности, ртутьорганические соединения, для которых ещё не разработаны достаточно эффективные и экономичные методы, – могут быть захоронены в глубоких подземных горизонтах. При использовании подземного захоронения сточных вод требуется гидрогеологическое обоснование возможности применения этого метода, поскольку существует вероятность загрязнения этими водами водоносных горизонтов. ^ Утилизация представляет собой переработку отходов, имеющую целью использование полезных свойств отходов или их компонентов. В этом случае отходы выступают в качестве вторичного сырья. Утилизацию можно подразделить на первичную, вторичную и смешанную. Под первичной утилизацией подразумевается использование отходов в различных отраслях промышленности без предшествующей глубокой физико-химической переработки; под вторичной – использование продуктов специальной переработки отходов. В результате процессов вторичной утилизации образуются продукты иного состава, чем исходные отходы. Утилизация смешанного типа включает в себя как первичную, так и вторичную утилизацию. По степени использования компонентов отходов утилизацию можно разделить на полную и частичную (неполную). В первом случае отходы используются целиком. ^ Наиболее широко первичная утилизация отходов может быть реализована в промышленности строительных материалов. Так, при получении цемента в качестве исходного сырья применяют доменные шлаки и бокситовые шламы, колчеданные огарки, колошниковую пыль, пиритные огарки, а также многие другие компоненты (промышленные отходы). В качестве минерализаторов в процессах обжига клинкера используют фосфогипс, электротермофосфорные шлаки и другие продукты. Использование фосфогипса в смеси с пиритными огарками интенсифицирует процесс обжига портландцементного клинкера, снижает температуру процесса и повышает качество получаемого сырья по сравнению с традиционными процессами. В первичную утилизацию могут быть вовлечены отходы пластмасс. Их можно после сортировки переплавлять в изделия или использовать в качестве наполнителей лёгких бетонов. Ограничением для первичной утилизации отходов является опасность их воздействия на человека и живые объекты природной среды. Так, в строительстве необходимо проверять получаемые из отходов детали и изделия на токсичность и радиационную активность, следует также учитывать изменение свойств продукции с течением времени, например растрескивание стеновых панелей. Первичная утилизация опасных отходов, например, содержащих ртуть, кадмий, свинец и ценные металлы, маловероятна. В этом случае отходы перед утилизацией разделяют на фракции, что представляет собой уже вторичную утилизацию. ^ При такой утилизации отходы подвергаются глубокой переработке. Так, органические и древесные отходы, смолы, пеки и концентрированные сточные воды могут быть полностью переработаны на товарную муравьиную или уксусную кислоты. Технико-экономические расчёты показали, что себестоимость уксусной кислоты, полученной в результате окисления воздухом органических отходов, примерно в 4 раза ниже себестоимости кислоты, получаемой в промышленности через ацетальдегид, и в 1,5 раза меньше, чем при синтезе её карбонилированием метанола. Процессы утилизации эффективны для отходов нефтепереработки и нефтехимии (например, кислых гудронов), отходов резины и резинотехнических изделий, шин, пластмассовых отходов. ЛитератураОсновная
Дополнительная 1. Буралев Ю. В., Павлова Е. И. Безопасность жизнедеятельности на транспорте: Учебник для вузов. – М: Транспорт, 1999. – 200 с. 2. Денисенко Г. Ф. Охрана труда. – М.: Высш. шк., 1985. – 213 с. 3. Жилов Ю. Д., Куценко Г. И. Справочник по медицине труда и экологии. – М: Высш. шк., 1995. – 175 с. 4.Трудовой кодекс Российской Федерации. – М.: Проспект, 2003. – 112с. 5. Козлитин A. M., Яковлев Б. Н. Чрезвычайные ситуации техногенного характера: Учеб. пособие / Под ред. А. И. Попова. – Саратов: Сар. гос. тех. ун-т, 2000. – 124 с. 6. Охрана труда в вычислительных центрах: Учеб. пособие для студентов / Ю. Г. Сибаров и др. – М.: МАЛИКО, 1990. – 192 с. 7. Протасов В. Ф. Экология, здоровье и охрана окружающей среды в России: Учеб. и справ. пособие. – М.: Финансы и статистика, 1999. – 672 с. 8. Эргономика и безопасность труда / Под ред. К. П. Боброва-Голикова и др. – М.: Машиностроение, 1985. – 301 с. ОГЛАВЛЕНИЕПредисловие 3 1. базовые положения ^ 2. ПРОИЗВОДСТВЕННАЯ САНИТАРИЯ 78 3. БЕЗОПАСНОСТЬ МАШИН И МЕХАНИЗМОВ 113 4. ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ 164 Литература 176 ОГЛАВЛЕНИЕ 177 Николай Александрович Чулков БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ Учебно-методическое пособие Научный редактор кандидат технических наук, доцент В. Н. Извеков Редактор Н. Т. Синельникова Подписано к печати Формат 60х84/16. Бумага офсетная. Плоская печать. Усл. печ. л. 10,46. Уч.-изд. л. 9,47. Тираж экз. 3аказ . Цена свободная. Издательство ТПУ. 634034, Томск, пр. Ленина, 30. ![]() |