Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon

Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура)





Скачать 3.2 Mb.
Название Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура)
страница 3/18
Дата конвертации 24.03.2013
Размер 3.2 Mb.
Тип Книга
1   2   3   4   5   6   7   8   9   ...   18
^

Чрезмерно высокая работа дыхания


Другим показанием к применению ИВЛ является такое состояние больного, когда его дыхательные мышцы вы­полняют чрезмерную работу, поглощая слишком много кислорода. В этих случаях можно говорить о чрезмерно высокой энергетической «стоимости» дыхания.

Приспособительные реакции организма направлены на то, чтобы обеспечить достаточный газообмен ценой наи­меньшей работы дыхания. В нормальных условиях энерге­тическая стоимость спокойного дыхания взрослого челове­ка составляет в среднем 0,5 кГм/мин, при этом количество кислорода, потребляемое дыхательными мышцами на 1 л вентиляции, составляет приблизительно 0,5 мл. Даже у здорового человека при гипервентиляции происходит боль­шое и непропорциональное увеличение работы дыхания, значительно повышается потребление кислорода дыхательными мышцами и уменьшается доля кислорода, остающаяся для «нереспираторной работы». По данным Attinger (1961), у здорового человека при объеме дыхания около 140 л/мин весь потребляемый кислород должен был бы использоваться дыхательными мышцами. У больных с на­рушенной механикой дыхания энергетическая стоимость дыхания значительно выше. Так, Norlandcr (1965) сообща­ет, что у больных с выраженной эмфиземой легких или бронхиальной астмой энергетическая стоимость дыхания при частоте 20 в минуту и дыхательном объеме 750 мл со­ставляет 90 кГм/мин и требует кислорода для дыхатель­ных мышц около 110 мл/мин. Понятно, что у таких боль­ных величина максимально допустимой спонтанной венти­ляции лежит в пределах низких значений, выше которых потребление кислорода дыхательными мышцами становит­ся столь большим, что эффективность дыхания делается близкой к нулю.

Причинами высокой энергетической стоимости дыхания являются обструктивные или рестриктивные нарушения дыхательного аппарата, возникающие при бронхиальной астме, тяжелой эмфиземе легких, пневмосклерозе, массив­ном плевральном выпоте, обширных травмах грудной клетки, после операции на органах грудной полости, осложнившихся отеком легких, при обильной послеоперационной бронхорее, обтурации трахеи и бронхов, ожирении и неко­торых других состояниях. При чрезмерно высокой работе дыхания наиболее эффективным способом лечения наряду с патогенетической терапией является искусственная вентиляция легких.

На высокую работу дыхания указывают следующие симптомы: мучительная для больного одышка, гиперпноэ (главным образом за счет тахипноэ), венозная гипоксемия с увеличением артериовенозной разницы по кислороду, ряд общих симптомов гиповентиляции (потение, бессонница, возбуждение), появляющихся даже без выраженной арте­риальной гиперкапнии. В случаях критического увеличения работы дыхания возможны асфиксия и коллаж.

Очень ценные сведения дает непосредственное измерение дыхательной работы методом пневмотахографии с определением внутрипищеводного давления. Нужно только за­метить, что это трудоемкое исследование не всегда выпол­нимо у тяжелобольных.

В заключение приводим критерии для перевода больных со спонтанного дыхания на искусственную вентиляцию лег­ких (табл. 1).


Таблица 1

^ Функциональные критерии перехода на искусственную вентиляцию легких [по Noehren, 1976]

Показатель

Норма


Критерий перехода на ИВЛ

Частота дыхания, мин-1

12-20

> 35

Жизненная емкость легких, мл/кг массы тела

65 — 75

< 15

Объем форсированного выдоха, мл/кг

50-60

< 10

Отношение: дыхательное мертвое пространство/дыхательный объем

0,25 — 0,4

> 0,6

Способность создать разрежение при вдо­хе из замкнутого пространства, см вод.ст.

75 — 100

< 25

Артериальное напряжение кислорода, Рао2 мм рт. ст.

75 — 100

< 70




(при дыхании возду­хом)

(при инга­ляции

100 % 02)

Артериальное напряжение углекислого га­за, Расо2 мм рт. ст.

35 — 45

> 55

Альвеолярно-артериальное различие Ро2 (при ингаляции 100% Оз в течение 10 мин), мм рт. ст.

25-65

> 450


Ни один из приведенных критериев не имеет самостоя­тельного абсолютного значения для перевода больного на ИВЛ. Только совокупность показателей при тщательной оценке особенностей данного больного, характера и дли­тельности основного патологического процесса, этиологии и патогенеза вентиляционной недостаточности, степени ее компенсации и тенденции ее развития позволяют опреде­лить показания к искусственной вентиляции легких.


Глава 2


^ ПРИНЦИПИАЛЬНЫЕ ОСНОВЫ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ


БИОМЕХАНИКА И СПОСОБЫ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ


Как отмечалось в главе 1, перемещение воздуха между внешней средой и легкими, т.е. вентиляция легких, осуще­ствляется благодаря разнице давлений во внешней среде и в альвеолах, при этом воздух всегда перемещается из области с более высоким в область с более низким давлением. При самостоятельном дыхании во время вдоха уси­лие дыхательных мышц, преодолевая эластическое сопро­тивление легких, увеличивает объем грудной клетки и соз­дает необходимую разницу давлений между внешней средой и легкими. При ИВЛ перемещение, воздуха (газовой смеси) между внешней средой и легкими совершается под воздействием внешней силы, создающей необходимую раз­ность давлений.

Существует два основных способа ИВЛ: способ вдува­ния и наружный (внешний) способ. При первом способе ИВЛ осуществляется путем подачи газовой смеси непо­средственно в верхние дыхательные пути; при втором — в результате наружного воздействия на стенки грудной по­лости: грудную клетку или диафрагму.

Можно представить, по крайней мере теоретически, еще один спо­соб ИВЛ — «способ без дыхательных движений». При этом больного (полностью) помещают в барокамеру, в которой с заданной частотой циклов меняется давление воздуха. Поскольку давление снаружи и из­нутри грудной клетки одинаково, она остается неподвижной, объем га­за в легких во время вдоха и выдоха остается постоянным. Переме­щение газа и его обновление в легких осуществляются за счет изме­нения количества газа в объеме вследствие изменения давления, т.е. за счет сжатия газа. Принимая функциональную остаточную ем­кость легких равной приблизительно 3500 мл, а дыхательный объем — 500 мл, находим, что количество воздуха в легких во время вдоха и выдоха разнится на 1/7. Для обеспечения таких колебаний нужно, чтобы перепад давлений в камере от вдоха к выдоху составлял при­близительно 1/7 величины атмосферного давления.

Некоторые авторы относят к наружному способу ИВЛ электростимуляцию дыхания, осуществляемую с помощью ритмичного электрического раздражения диафрагмального нерва или непосредственно дыхательных мышц. Нам это представляется принципиально ошибоч­ным: стимуляция спонтанного дыхания с помощью электрического или иного воздействия на центры, нервные проводники или исполнительные органы, предпринимаемая для возобновления или усиления двигатель­ной активности дыхательных мышц, — это не искусственная вентиляция легких в точном понимании данного термина. Возражать против это­го — значит логически прийти к допущению, что инъекция лобелина — это тоже метод ИВЛ.

^ ИВЛ наружным (внешним) способом. При этом способе перемежающееся давление в грудной полости и в легких (и связанное с этим перемещение газа между внешней средой и легкими) происходит за счет наружного воздей­ствия на грудную клетку или диафрагму.

Аппараты ИВЛ наружного действия работают на грави­тационном или пневматическом принципе. К первым отно­сится «качающаяся кровать», ко вторым — аппараты типа «железные легкие», аппараты с кирасой и аппараты с пнев­матическими нагрудными поясами.

При ИВЛ с помощью аппарата «качающаяся кровать» больного укладывают на спину на кровати, которая качается относительно своей поперечной горизон­тальной оси. При опускании головного конца кровати содержимое брюшной полости своей массой давит на диа­фрагму, благодаря чему происходит активный выдох. При поднимании головного конца кровати диафрагма опускает­ся, обеспечивая поступление воздуха в легкие. Аппараты снабжены регуляторами частоты качаний и угла наклона кровати (последним обеспечивается изменение глубины ды­хания). Применение «качающихся кроватей» удобно из-за простоты и доступности обслуживания больных. Однако, используя данный метод, невозможно обеспечить вентиля­ционные потребности при полном параличе дыхания; кро­ме того, более или менее длительное качание вызывает весьма неприятные ощущения у больного. В свое время «качающиеся кровати» нашли применение в основном у детей младшего возраста с частичном параличом дыхания и в период реконвалесценции при полиомиелите.

Аппарат «железные легкие» обеспечивает про­ведение наружного способа ИВЛ путем создания циклических изменений давления воздуха вокруг всего тела боль­ного, за исключением головы. Аппарат представляет собой герметичную камеру, соединенную с воздушным насосом. Работа насоса обеспечивает периодическое нагнетание или отсасывание воздуха из камеры. Давление в камере (а сле­довательно, и характер дыхания) может меняться по одно­му из трех вариантов: активный вдох — пассивный выдох; активный выдох — пассивных вдох; активный вдох — ак­тивный выдох.

Кирасные аппараты применяются для осущест­вления ИВЛ путем создания циклических изменений дав­ления воздуха вокруг грудной клетки и верхней части жи­вота больного. Принцип их работы тот же, что и «желез­ных легких», но вентиляционный эффект меньший.

ИВЛ с помощью «железных легких» или кирас, прово­димую с активным вдохом, можно было бы считать наи­более соответствующей по биомеханике спонтанному ды­ханию (рис. 1). Однако в отличие от него разрежение при вдохе оказывает действие на все тело («железные легкие») или на значительную часть его (кирасы), что снижает ве­нозный приток к сердцу. Это является одним из важных недостатков метода. Другими недостатками являются труд­ности ухода за больными, невозможность применения ап­паратов для ИВЛ во время хирургических операций, а также громоздкость и дороговизна «железных легких».

Аппараты с пневматическими наружными поясами (манжетами) осуществляют ИВЛ путем соз­дания циклических изменений давления воздуха в поясе, накладываемом на грудную клетку или на верхнюю часть живота больного. Вентиляция осуществляется при актив­ном выдохе (нагнетание воздуха в пояс) и пассивном вдо­хе (отсасывание воздуха из пояса).

В принципе способ аналогичен ручной искусственной вентиляции по Шефферу. Такой способ едва ли можно счи­тать физиологичным, так как при его выполнении для достижения удовлетворительного вентиляционного эффек­та необходимо нагнетать воздух в пояс под значительным давлением (до 10 кПа) из-за малой поверхности соприкос­новения пояса с телом. Однако пневматические манжеты все еще применяются горноспасательной службой ввиду простоты и доступности обслуживания. Они входят в комп­лект аппаратов «Горноспасатель-6».

Введенные в практику в конце 20-х годов нашего сто­летия аппараты типа «железные легкие», а также кирасы широко применялись в начале и середине 50-х годов в связи с эпидемией полиомиелита в Европе и Америке. Однако перечисленные недостатки ИВЛ наружным способом в целом и самих аппаратов в частности послужили причиной постепенного отказа от их применения.



1. Функциональные кривые при самостоятельном дыхании и ИВЛ, выполняемой наружным способом (а), а также ИВЛ, выполняемой спо­собом вдувания (б).

V — объемная скорость вдувания газа; Рл — внутрилегочное давление; Рпл — давление в плевральной полости; Рр — давление «во рту»; Vт — дыхательный объем; t — время; ТI — продолжительность вдоха; ТE — продолжительность вы­доха.


^ ИВЛ способом вдувания. При этом способе поступление дыхательного газа в легкие обеспечивается его нагнетани­ем в легкие до создания в них на вдохе давления, превосходящего давление газа окружающей среды. Такое опре­деление справедливо для вдувания как с перемежающимся по величине или по величине и знаку давлением, так и с постоянным положительным давлением. При этой послед­ней разновидности способа замещение альвеолярного газа происходит за счет непрерывного поступления в легкие потока кислорода. Этот способ называют «апнойной оксигенацией» или «авентиляторным газотоком». Мы не счита­ем эти названия удачными. При данном способе переме­щение газа осуществляется из области с большим в об­ласть с меньшим давлением, а давление в генераторе потока постоянно, и можно говорить об ИВЛ способом вду­вания с постоянным положительным давлением.

ИВЛ способом вдувания можно разделить на два основ­ных вида: вентиляцию с перемежающимся по­ложительным давлением (ВППД; intermittent positiv pressure ventilation — IPPV английских авторов), т.е. с активным вдохом и пассивным выдохом, и венти­ляцию с перемежающимся положительным-отрицательным давлением (ВППОД; intermittent positive-negative pressure ventilation — IPNPV, NEEP ан­глийских авторов), т.е. с активным вдохом и активным выдохом.

Первый вид имеет две разновидности:

а) вентиляцию с перемежающимся положительным-нуле­вым давлением (Zero end-expiratory pressure — ZEEP английских авторов), при которой пассивный выдох совершается свободно, без задержки, и легкие пациента спада­ются при выдохе до размеров функциональной остаточной емкости, и

б) вентиляцию с перемежающимся положительным — положительным давлением (Positive end-expiratory pressure — PEEvY английских авторов), при которой из-за сопротивления пассивному вы­доху (или противодавления) легкие пациента за время вы­доха не опорожняются до функциональной остаточной ем­кости. При этом возникают постоянные по знаку, но отличающиеся по величине давления в конце вдоха и выдоха.

Какое давление можно определить под маской или в тройнике аппарата во время ИВЛ, т.е. в том месте систе­мы аппарат — больной, которое принято называть «во рту»? Выше было сказано, что давление, необходимое для введениях некоторого объема воздуха в альвеолы, зависит от эластического и неэластического сопротивления.

Допустим, например, что во время искусственного вдоха, продолжающегося 1 с, подают смесь газов с постоянной скоростью 0,5 л/с больному, у которого общая растяжи­мость легких и грудной клетки составляет 0,05 л/см вод.ст. (0,5 л/кПа), а сопротивление дыхательных путей равно 2 см вод.ст./л/с (0,2 кПа*с/л). При указанных скорости и сопротивлении для поддержания газотока необходима по­стоянная разность давлений между ртом и альвеолами, равная 2 см вод.ст./л/с X 0,5 л/с=1 см вод.ст. (0,2 кПа*с/л X 0,5 л/с = 0,1 кПа).

Из скорости и времени вдоха находим, что в конце вдо­ха в альвеолы будет введено 0,5 л газовой смеси, что при­ведет, учитывая величину растяжимости, к повышению давления в альвеолах в конце вдоха до 10 см вод.ст. (1 кПа). Давление «во рту», равное в начале вдувания 1 см вод.ст. (0,1 кПа), будет составлять перед самым концом вдувания 11 см вод.ст. (1,1 кПа). Этот расчет при­близителен. Строго говоря, пик давления «во рту» возни­кает раньше «альвеолярного пика», и поэтому максималь­ное давление «во рту» будет всегда немного меньше расчетной суммы давлений. В общем виде наибольшая вели­чина давления вдоха, измеренного «во рту» (пик давления), равна давлению, необходимому для преодоления со­противления дыхательных путей плюс внутриальвеолярное давление в данный момент дыхательного цикла.

Если сопротивление дыхательных путей и скорость вдоха при ИВЛ невелики (как в нашем примере), то пик давле­ния «во рту» можно практически считать равным внутриальвеолярному давлению в конце вдоха. При большом со­противлении и высокой скорости вдоха пик давления «во рту» может намного превышать внутриальвеолярное дав­ление в конце вдувания. Нужно учитывать также, что дав­ление «во рту» очень быстро после начала выдоха воз­вращается к атмосферному, а давление в альвеолах из-за сопротивления выдоху, оказываемого дыхательными путямя больного, дольше снижается до атмосферного. При очень малом времени выдоха, например при так называе­мой высокочастотной вентиляции, возникает остаточное по­ложительное давление в легких в конце выдоха (ПДКВ), которое не может быть определено мановакуумметром ап­парата. Это следует учитывать при измерении давления на вдохе и выдохе с помощью мановакуумметра.

Внутриплевральное и внутрилегочное давления, их особенности при искусственной вентиляции легких. Внутриплевральное дав­ление при спонтанном дыхании в конце выдоха и во время экспираторной паузы равно в норме — 5 см вод.ст. Во время вдоха внутриплевральное давление понижается в среднем до — 8 см вод.ст. ( — 0,8 кПа), а во время выдоха снова повышается до — 5 см вод.ст. ( — 0,5 кПа) (см. рис. 1,а).

При ИВЛ с перемежающимся положительным давлени­ем внутриплевральное давление во время вдоха повыша­ется в среднем от — 5 см вод.ст. ( — 0,5 кПа) до 3 см вод.ст. (0,3 кПа), возвращаясь затем во время выдо­ха к — 5 см вод.ст. ( — 0,5 кПа) (см. рис. 1,6).

Внутрилегочное (внутриальвеолярное) давление во вре­мя вдоха при спонтанном дыхании снижается, обеспечивая градиент (перепад) давления, нужный для поступления воздуха в легкие. Этот градиент давления у здоровых лю­дей невелик и служит только для преодоления сопротив­ления воздухоносных путей. Эластическое сопротивление легких и грудной клетки преодолевается работой дыха­тельных мышц.

Разность давлений для обеспечения спокойного вдоха у здорового человека должна быть равной 1 — 2 см вод.ст. Разрежение внутри легких при спонтанном дыхании и со­ставляет на высоте вдоха около — 2 см вод.ст. К концу вдоха давление в легких в нормальных условиях становит­ся равным атмосферному. При спонтанном выдохе давление в легких сначала возрастает на 2 — 3 см вод.ст. выше атмосферного за счет эластической тяги спадающихся лег­ких, а затем постепенно снижается до атмосферного по мере опорожнения легких.

В отличие от этого при ИВЛ с перемежающимся поло­жительным давлением внутрилегочное давление во время вдоха увеличивается и становится выше атмосферного. Так, например, при объеме вдоха 500 мл и общей растя­жимости 0,05 л/см вод.ст. давление в альвеолах в конце вдоха становится равным +10 см вод.ст. Во время выдо­ха внутрилегочное давление снова падает до атмосферного по мере опорожнения легких (см. рис. 1,6).

Среднее внутрилегочное давление. Этот важный параметр нельзя представлять как среднюю ариф­метическую между самым высоким и самым низким давлениями во время дыхательного цикла.

На рис. 2 представлены два графика давление/время ды­хательных циклов при ИВЛ с перемежающимся положи­тельным давлением. В обоих случаях дыхательный объем, пик давления и время цикла одинаковы. Однако на рис. 2,б введенный на вдохе газ (и соответственно этому пик давления) задержан на более длительное время, чем на рис. 2,а. Понятно, что и среднее внутрилегочное давле­ние в первом случае выше, чем во втором. Рис. 2,б отли­чается от рис. 2,а большей числовой величиной отно­шения площади, ограниченной кривой давления и линией нулевого давления, к длине отрезка оси абсцисс, соответствующего времени цикла. Иными словами, величина сред­него внутрилегочного давления равна отношению площади, ограниченной кривой давления и линией нулевого давле­ния, к времени всего дыхательного цикла.

Из сравнения механики спонтанного дыхания и ИВЛ с перемежающимся давлением следует, что среднее внутри­легочное давление при спонтанном дыхании приблизитель­но равно атмосферному и всегда ниже среднего внутриле­гочного давления при ИВЛ с перемежающимся положи­тельным давлением.




2. Внутритрахеальное (сплошная линия) и внутрипищеводное (внутрилегочное) (пунктир) давление при ИВЛ с одинаковым дыхатель­ным объемом и частотой у одного и того же больного. а — аппарат РО-2; б — аппарат «Барнет-вентилятор».


^ НЕЖЕЛАТЕЛЬНЫЕ ЭФФЕКТЫ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ


Основное качественное отличие спонтанного дыхания от ИВЛ способом вдувания состоит в том, что внутриплевральное и внутрилегочное давления во время спонтанно­го вдоха снижаются, а при искусственном вдувании — по­вышаются, т.е. существует инверсия внутригрудного давления. Это явление позволило некоторым авторам считать ИВЛ «нефизиологичной в самой своей сущности» (Frey, Stoffregen, 1959].

Повышение внутрилегочного и внутриплеврального (вну­тригрудного) давлений при ВППД в принципе отрицатель­но воздействует на сердечно-сосудистую систему и легкие.

^ Влияние на возврат венозной крови к сердцу. Снижение внутригрудного давления при спонтанном вдохе играет роль «двойного насоса»: с одной стороны, оно обеспечива­ет приток воздуха в легкие, а с другой — как бы присасы­вает кровь из периферических вен к полым венам и правому предсердию, активно способствуя нормальному крово­обращению. Так, давление в периферических венах (на­пример, в бедренной) колеблется в норме около нуля. Дав­ление в ушке правого предсердия во время спонтанной вдоха имеет отрицательную величину — 8 см вод.ст., что обеспечивает нормальный венозный приток к сердцу. ВППД расстраивает этот важный механизм: внутригрудное давление на вдохе растет и становится положитель­ным. Параллельно растет давление в правом предсердии и больших венах, градиент давления между периферически­ми венами и правым предсердием падает, снижается при­ток венозной крови к сердцу, уменьшается минутный сердечный выброс, возникает периферический венозный стаз.

В норме организм реагирует на повышение центрально­го венозного давления компенсаторным повышением дав­ления в периферических венах, что приводит к восстанов­лению градиента и нормализации возврата венозной крови к сердцу. Компенсаторные реакции обеспечиваются повышением тонуса периферических вен и тонуса мышц, в частности абдоминальных. Если способность организма к компенсаторным реакциям ослаблена, особенно если внутригрудное давление слишком велико и длительно сохра­няется, то минутный объем сердца прогрессивно уменьшается, что может закончиться сердечно-сосудистым коллап­сом. Как показали классические работы Werko (1947), Cournand и соавт. (1948), даже у больных в хорошем об­щем состоянии при ВППД с конечным давлением вдоха 20 см вод.ст. (среднее внутрилегочное давление прибли­зительно 7 см вод.ст.) минутный сердечный выброс умень­шается в среднем на 15%.

Уменьшение сердечного выброса зависит также от того, что сердце само по себе на высоте вдоха при ВППД под­вергается сдавливанию. Это позволяет говорить о «функ­циональной тампонаде сердца» в условиях ИВЛ. Наибо­лее способствует усугублению расстройств кровообра­щения при ВППД гиповолемия, вызванная шоком, кровотечением, интоксикацией и другими причинами.

^ Влияние на легочный кровоток. Капиллярный кровоток и объем крови в легких зависят от давления в легочной артерии, гравитационного эффекта в связи с положением тела и внутриальвеолярного давления газа. Механический фактор — сдавливание легочных капилляров при повыше­нии внутрилегочного давления — неблагоприятно действует на легочный кровоток. Даже небольшое повышение вну­трилегочного давления (до 6,5 см вод.ст.) заметно пре­пятствует нормальному легочному кровообращению, созда­ет дополнительную нагрузку на правый желудочек сердца и может привести к правожелудочковой недостаточности. В норме на высоте спонтанного вдоха в сосудах легких находится 9% всего объема циркулирующей крови. При внутрилегочном давлении 27 см вод.ст. это количество крови уменьшается наполовину, при 60 см вод.ст. легоч­ные сосуды полностью освобождаются от крови. Однако, по мнению Bendixen и соавт. (1965), а также ряда других исследователей [Cournand et al.], опасность уменьшения общего легочного кровотока маловероятна, если высокое «пиковое» давление в альвеолах сохраняется лишь в тече­ние небольшой части дыхательного цикла. Другое дело — регионарные расстройства легочной перфузии при ИВЛ. Большинство исследователей [Зильбер А.П., 1971; Eckenhoff et al., 1963; Freedman, Nunn, 1963; Pontoppidan et al., 1965] обнаружили значительные нарушения регионарного распределения кровотока в легких при ИВЛ. Причиной этих нарушений является прежде всего возрастание грави­тационного фактора крови при увеличении внутриальвео­лярного давления с перемещением крови из более высоких в расположенные ниже отделы легких. И как их след­ствие — увеличение альвеолярного мертвого пространства и ухудшение легочного газообмена.

^ Возможность повреждения легочной ткани. Повышенное давление в легких при ВППД может вызвать так называе­мую баротравму легочной ткани, вплоть до ее разрыва. Однако Mushin и соавт. считают возможность разрыва не более вероятной, чем во время обычной жизни человека. Действительно, при кашле и чиханье внутрилегочное дав­ление повышается до 200 см вод.ст., а натуживание при родах, дефекации и т.д. вызывает еще более высокий его подъем без нарушения целости легких, хотя случаи разрыва легочной ткани при ВППД описаны [Macklin, 1967].

Повреждению легочной ткани при ИВЛ могут способ­ствовать два основных фактора.

1. При спонтанном дыхании внезапному повышению внутрилегочного давления (например, при кашле) противо­стоит адекватное напряжение грудной клетки, препят­ствующее чрезмерному растяжению легочной ткани. Во время ИВЛ, особенно при релаксации мышц, это защитное действие значительно ослаблено.

2. При ИВЛ проходимость части дыхательных путей может оказаться резко уменьшенной. Уменьшенной может оказаться и растяжимость отдельных участков легкого. В этих условиях вводимый в легкие газ распределяется неравномерно. Газ, подаваемый под большим давлением и с высокой скоростью, направится к альвеолам, сохранив­шим высокую растяжимость и свободные воздухоносные пути, что может привести к перерастяжению стенок этих альвеол и к их разрыву. При всех равных условиях наи­большая опасность разрыва альвеол существует у больных с буллезной эмфиземой. Максимальное безопасное в отно­шении разрыва альвеол давление не превышает 70 см вод.ст.

^ Влияние ИВЛ на распределение легочной вентиляции. Описанные выше вредные эффекты искусственной вентиля­ции легких находятся в прямой зависимости от увеличения внутригрудного и внутрилегочного давления. Реальное зна­чение этих эффектов еще спорно, но их существование не вызывает сомнений.

Влияние ИВЛ на распределение вентиляции так же не­достаточно изучено. Многие авторы исследовали влияние различных режимов ИВЛ на распределение вдыхаемого га­за в легких [Bergman, 1968, 1972; Joung et al., 1968]. Однако никто из них не отмечает, что само по себе повы­шение внутрилегочного давления ухудшает распределение по альвеолам газа при ИВЛ но сравнению со спонтанным дыханием. Некоторые исследователи вообще считают, что более высокое [Bergman, 1972] или более продолжительное [Fairley, Blenkarn, 1966] давление на вдохе при ИВЛ способствует лучшему распределению вентиляции.

В убедительных экспериментах на модели легких Zictz (1981) показал, что при отсутствии регионарных легочных нарушений сопротивления и растяжимости распределение газа при ИВЛ всегда равномерное. И только при значи­тельных нарушениях происходит неравномерное распреде­ление вентиляции при ИВЛ (что было бы и при спонтан­ном дыхании), поэтому для коррекции этой неравномерно­сти необходим выбор специального режима вентиляции. Оптимальные режимы ИВЛ рассмотрены ниже.

Можно было бы считать вредным эффектом ИВЛ прогрессирующее коллабирование альвеол и ухудшение рас­пределения газа в легких при «монотонной» вентиляции постоянными и умеренными по величине дыхательными объемами (см. главу 1). Однако ничто не мешает периодическому проведению гиперинфляции легких при ИВЛ, как при спонтанном дыхании.


^ РАЦИОНАЛЬНЫЕ ПАРАМЕТРЫ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ


Рациональная методика ИВЛ может сделать ее высоко­эффективной и в то же время практически безопасной, ес­ли она основана на обеспечении адекватного газообмена при максимальном ограничении вредных эффектов, а так­же при сохранении субъективного ощущения «дыхательно­го комфорта» у больного, если он во время ИВЛ остается в сознании.

Понятие «рациональная методика» подразумевает преж­де всего рациональный выбор для данного больного сле­дующих параметров ИВЛ: минутной вентиляции, дыха­тельного объема, частоты вентиляции, давления на вдохе и на выдохе (а также особенностей его изменения в тече­ние дыхательного цикла), отношения продолжительности вдоха и выдоха, скорости вдувания газов (а также особен­ностей ее изменения в течение дыхательного цикла).

Указанные параметры тесно связаны и обусловливают друг друга. Тем не менее при выборе конкретных величин параметров ИВЛ одному из них придается значение основ­ного, определяющего величину всех остальных. Таким основным параметром является минутный объем венти­ляции.

Минутный объем вентиляции. ИВЛ только тогда выполнит свое назначение, когда обеспечит достаточный минутный объем альвеолярной вентиляции, какими бы при этом ни оказались другие параметры.

При ИВЛ достаточную вентиляции можно определить как обмен вентиляционных объемов между внешней сре­дой и легкими, необходимый для поддержания нормально­го напряжения углекислого газа в артериальной крови. Величина достаточной вентиляции зависит от величины общего мертвого пространства (к которой следует приба­вить также и величину «мертвого пространства аппара­та»), а также от количества углекислого газа, выделяемо­го в организме больного.

Как указывалось выше, величиной, характеризующей легочную вентиляцию, является не минутный объем дыха­ния, а минутный объем альвеолярной вентиляции, который равен разности дыхательного объема и общего объема мертвого пространства, умноженной на частоту дыхания. При этом выбираемыми для ИВЛ параметрами являются дыхательный объем и частота дыхания.

Дыхательный объем. Он должен быть достаточ­ным для «промывки» мертвого пространства и удаления углекислого газа из альвеолярного воздуха. Если дыха­тельный объем будет меньше или равен объему мертвого пространства, то теоретически альвеолярная вентиляция должна быть равна нулю. Однако практически при дыха­тельном объеме, который меньше объема мертвого прост­ранства, незначительное количество вдыхаемого газа все же достигает альвеол [Briscoe et al., 1951]. Это происхо­дит главным образом в результате конического (слойного) движения вдыхаемого газа по воздухоносным путям и диф­фузии газа в газовой среде.

Для здорового человека размеры физиологического мертвого пространства и количество выделяемого углекис­лого газа могут быть высчитаны с достаточной точностью, что позволило Radford и соавт. (1954, 1955) предложить способ определения необходимого объема вентиляции.

С учетом объема мертвого пространства и необходимой минутной вентиляции Radford и соавт. составили номо­грамму для определения оптимального дыхательного объема, обусловленного полом и массой тела пациента, ча­стотой дыхания и температурой тела (рис. 3).

Номограмма Рэдфорда составлена для определения оп­тимального дыхательного объема в обычных условиях основного обмена. Условия при наркозе или проведении реанимационных мероприятий значительно отличаются от условий основного обмена. Поэтому в найденную по номограмме величину оптимального дыхательного объема вво­дят поправки с учетом ряда факторов:

1) при повышенной температуре тела необходимый дыхательный объем уве­личивают на 5% на каждые 0,5°С сверх 37°С;

2) при «обычной активности» увеличивают дыхательный объем на 10% по сравнению с таковым в условиях основного обме­на;

3) в местностях выше уровня моря дыхательный объем увеличивают на 5% на каждые 600 м;

4) при применении медикаментов, обладающих катаболическим действием (например, атропин, этиловый эфир), увеличивают дыха­тельный объем в среднем на 20%;

5) при ИВЛ через трахеальную трубку (или трахеостомическую канюлю) дыха­тельный объем уменьшают на 30 — 50 мл, так как трахеальная интубация (или трахеостомия) уменьшает мертвое пространство;

6) объем присоединительных частей аппара­та (маска, тройник, коннектор и т.д.) прибавляют к ды­хательному объему, найденному по номограмме Рэдфорда;

7) повышенное давление в аппарате во время фазы вдоха приводит к некоторому растяжению обычных гофрирован­ных шлангов на всем пути газовой смеси от аппарата до тройника. На заполнение возросшего объема шлангов ухо­дит некоторая часть подаваемого дыхательного объема; ее величина зависит от растяжимости шлангов и давления во время дыхательного цикла. С учетом этого фактора кор­ригируют подаваемый аппаратом дыхательный объем. Зна­чимость этого фактора особенно возрастает при высокоча­стотной ИВЛ с относительно малым дыхательным объемом и высокой величиной ПДКВ.




3, Номограмма для определения оптимального дыхательного объема [по Radford et al., 1954].


Практически при определении оптимального дыхательно­го объема для ИВЛ нужно учитывать сумму перечислен­ных факторов. Кроме того, при ИВЛ могут, быть регионарные нарушения вентиляционно-перфузионных отношений с увеличением доли альвеолярного мертвого простран­ства, что само по себе требует увеличения, нередко значи­тельного, объема вентиляции. Поэтому при ИВЛ величи­ну дыхательного объема, найденную по номограмме Рэдфорда, увеличивают в среднем на 30%. Т.М. Дарбинян (1976) предложил следующую формулу для расчета минут­ного объема вентиляции:

^ MOB (л/мин) = масса_тела/10 кг + 1.


В.С. Ширяев и А.Л. Тверской (1979) подтвердили прием­лемость этой формулы.

Не следует забывать о возможной утечке вдыхаемого газа на пути от аппарата до легких пациента. Утечка бы­вает непредвиденной (из-за плохой герметизации системы) или преднамеренной (открытие предохранительного клапа­на). Всякая утечка газа должна быть вовремя обнаруже­на, устранена или учтена при подаче необходимого дыха­тельного объема.

Для контроля адекватности вентиляции наряду с изме­рением напряжения углекислого газа в крови необходимо измерять минутную вентиляцию и дыхательный объем. До­стоверные данные позволяет получить только непосред­ственное измерение дыхательного объема с помощью специальных приборов (вентилометр, спиромонитор). Для большей точности измерений приборы или их датчики ус­танавливают в линии выдоха.

Одновременно с измерением дыхательного объема не­обходимо измерять максимальное давление вдоха с по­мощью мановакуумметра, который есть у аппаратов ИВЛ практически всех типов. Измерение давления на вдохе по­зволяет (при известном дыхательном объеме) весьма приблизительно вычислить растяжимость легких и грудной клетки (как отношение величины дыхательного объема к величине давления вдоха). Уменьшение растяжимости име­ет важное прогностическое значение прежде всего как ран­ний признак легочных осложнений с нарушением вентиляционно-перфузиоииых отношений. Кроме того, если приме­няется аппарат ИВЛ с переключением по давлению, то нераспознанное уменьшение растяжимости легких и груд­ной клетки неизбежно приведет к уменьшению дыхатель­ного объема со всеми нежелательными последствиями.

Частота дыхания. Не менее важно рационально выбрать частоту дыхания. Многие авторы считают опти­мальной частоту 14 — 18 в минуту при ИВЛ у взрослых [Максимов Б.П., 1979; Herzog, 1970; Bergman, 1972]. Вполне допустимы колебания частоты от 10 — 12 [Афин­ский Н.П., 1972; Pontoppidan, 1965] до 20 — 22 в минуту [Кассиль В.Л., Рябова Н.М., 1977].

Слишком редкое дыхание нерационально, так как при нем значительно возрастает необходимый дыхательный объем, что может привести к чрезмерно высокому и опас­ному «пику давления», к перерастяжению стенок альвеол и баротравме легких. Кроме того, слишком редкое дыха­ние с большими экспираторными паузами может вызвать так называемую циклическую гипоксемию [Bergman, 1961].

При более частом дыхании можно подобрать такой ды­хательный объем, чтобы альвеолярная вентиляция остава­лась нормальной. Так, Gray и соавт. (1959) для макси­мального уменьшения «пика давления» в альвеолах и среднего внутригрудного давления первыми предложили применять частое дыхание (до 50 — 60 в минуту) при сни­жении дыхательного объема до 250 мл.

^ Недостаточная и избыточная вентиляция. Что же яв­ляется показателем достаточности вентиляции: нормальное содержание О2 или СО2 в крови, оттекающей от лег­кого?

Насыщение крови кислородом зависит не только от ве­личины вентиляции, но и от распределения вентиляции и кровотока, существования артериовенозных шунтов, диф­фузионной способности альвеоло-капиллярных мембран, а при вдыхании газовой смеси — еще и от содержания в ней кислорода. В то же время удаление углекислого газа зависит практически только от альвеолярной вентиляции. Легко представить случай, когда вследствие значительного нарушения диффузии кровь легочных капилляров не будет достаточно насыщена кислородом (если во вдыхаемой сме­си газов парциальное давление кислорода не будет повышенным), какой бы величины ни достигла вентиляция, в то время как содержание углекислого газа в крови легоч­ных капилляров будет нормальным. При значительном уменьшении дыхательного объема, по высоком содержа­нии кислорода во вдыхаемой газовой смеси гииоксемии может и не быть, но обязательно наступят задержка угле­кислого газа и гиперкапния.

Таким образом, достаточность минутного объема венти­ляции определяется нормальным содержанием углекисло­го газа в крови, оттекающей от легкого. В свою очередь содержание углекислого газа в артериальной крови может быть определено по его содержанию в альвеолярном воз­духе, которое в норме составляет приблизительно 5,6% (РАсо2 соответственно равно 40 мм рт. ст). Следовательно, можно заключить, что при нормально функционирующих легких достаточным будет тот объем вентиляции, при ко­тором содержание СО2 в альвеолярном воздухе составит приблизительно 5,6%.

Гиповентиляция во время ИВЛ, когда больному подают смесь газов с повышенным содержанием кислорода, редко приводит к гипоксемии, но всегда вызывает задержку и накопление углекислого газа в альвеолярном воздухе и в крови, т.е. гипоркапнию.

Однако ИВЛ нередко сопровождается не гипо-, а гипервентиляцией, результатом которой становится гипокапния. Умеренная альвеолярная гипервентиляция (при напряже­нии CO2 в артериальной крови, равном 30 — 35 мм рт. ст.) почти никогда не является опасной. «Неинструментальная» диагностика гипер-, а особенно гипокапнии во время ИВЛ трудна и требует опыта и наблюдательности. Наиболее надежные результаты дает измерение напряжения угле­кислого газа в артериальной крови. Можно также изме­рить содержание углекислого газа в альвеолярном возду­хе. Следует помнить, что концентрации (напряжение) аль­веолярного и артериального CO2 могут считаться равными только у больных с нормальной функцией легких. При выраженных расстройствах отношения вентиляция/перфузия альвеолоартериальный градиент СО2 неопределенно увеличен и непостоянен, да и сам анализируемый в этих случаях газ представляет собой не альвеолярный, а так называемый конечно-выдыхаемый газ (end-expiration gas английских авторов).

На практике важно знать, как быстро меняется концент­рация CO2 в альвеолярном воздухе при тех или иных изменениях вентиляции. Допустим, что врач обнаружил у пациента признаки, гиперкапнии. Сколько времени нужно проводить гипервентиляцию, чтобы удалить избыток СО2 из альвеол? Dripps, Severinghaus (1955), ссылаясь на опыты Fenn, Rahn, Utis, утверждают, что требуется не менее 4 мин интенсивной гинервентиляции, чтобы полу­чить стойое снижение альвеолярной концентрации СО2 на 50% от исходного уровня. Таким образом, если в ре­зультате гиповентиляции РАсо2 поднялось с 40 до 80 мм рт. ст., то потребуется не менее 4 мин гипервентиляции, чтобы нормализовать содержание СО2 в альвеолах. Разу­меется, что при большем накоплении углекислого газа нужна еще более длительная гипервентиляция. Все указан­ное верно и тогда, когда у пациента имеется не гипер-, а гипокапния в результате гипервентиляции и когда необхо­димо поднять содержание СО2 до нормальных цифр. Ко­нечно, и в этом случае нужна довольно длительная нор­мальная или пониженная (допустима только при высоком содержании кислорода во вдыхаемой смеси газов) венти­ляция, чтобы вернуть содержание СО2 в альвеолах к нор­мальным цифрам.

Отметим, что для изменения концентрации альвеолярно­го кислорода нужно гораздо меньше времени: достаточно, например, нескольких глубоких вдохов газовой смеси с вы­соким содержанием кислорода, чтобы вывести больного из состояния дыхательной гипоксии. Разница связана с тем, что емкость крови и тканей для углекислоты гораздо вы­ше, чем для кислорода.

^ Снижение максимального и среднего давлений в легких. Мы отмечали уже, что больному при всех условиях дол­жен быть обеспечен достаточный минутный объем вен­тиляции. Однако совершенно не безразлично, ценой како­го давления в легких будет достигнут этот объем вентиля­ции. Как показали ставшие классическими исследования, вредные эффекты ИВЛ связаны прежде всего с повыше­нием среднего виутрилегочного давления. Поэтому долго считали рациональной такую методику ИВЛ, при которой дыхательные потребности пациента удовлетворяются при наиболее низком среднем давлении в легких.

Считалось общепринятым, что «пик давления» в легких на высоте вдоха не должен превышать 20 см вод.ст., и лишь во время коротких периодов раздувания легких до­пустимо давление, превышающее 30 см вод.ст. Жела­тельно, чтобы среднее внутрилегочное давление не пре­вышало 4 — 5 см вод.ст. Со времен исследований Frey, Stoffregen (1959) оптимальным считался такой режим ИВЛ, при котором среднее внутрилегочное давление стре­мится к нулю, как при спонтанном дыхании.

Дыхательные потребности больного во время ИВЛ при минимальном среднем давлении в легких мож­но обеспечить при соблю­дении следующих усло­вий.

1. Положительное давление в легких должно поддержи­ваться только во время введения в легкие требуемого дыхательного объема. Иными словами, выдох дол­жен начинаться немедленно после введения газа в легкие, без задержки после вдоха. Задержка газа в легких после окончания вдувания (пауза вдоха), как при использовании некоторых моделей аппаратов ИВЛ, приводит к появле­нию «плато» на кривой давления и к увеличению среднего внутрилегочного давления.

Паузой вдоха следует называть ту часть вдоха, во время которой вдувание газа в легкие пациента уже прекрати­лось, а выдох еще не начался. С технической точки зрения пауза вдоха характеризуется тем, что линии вдоха и выдо­ха аппарата перекрыты и от пациента отсоединены, по­этому скорость вдувания равна нулю, а давление «во рту» и дыхательный объем не увеличиваются (рис. 4). Ряд авто­ров, начиная с Engstrorn (1963), считают, что наличие «плато» способствует равномерности внутрилегочного распределения вентиляции [Максимов Б.П., 1979; Damman, McAslan, 1977; Zietz, 1981]. Вместе с тем специальные клинические исследования с применением азотографического метода определения равномерности вентиляции [Юревич В.М., 1966], равно как и экспериментальные исследования на модели легких [Черкасова А.А., 1970], не выявили отличий в равномерности распределения вентиля­ции при проведении ИВЛ с «плато» на вдохе и без него. Nordstrom (1972) в весьма обстоятельных экспериментальных исследованиях обнаружил, что Pao2 и Расо2 не имеют различий при ИВЛ с «плато» на вдохе и без него. Зато при наличии «плато» на вдохе было отмечено уменьшение минутного и ударного объема сердца, снижение артери­ального давления, а также снижение проходимости сосу­дов легкого (что эквивалентно уменьшению легочного кровотока). Клинические исследования Б.П. Максимова (1979) также показали, что введение паузы вдоха, состав­ляющей по времени 20% от длительности всего дыхатель­ного цикла, приводит к повышению среднего внутрилегоч­ного давления на 43% и сопровождается снижением веноз­ного возврата крови и производительности работы сердца.




4. Функциональные кривые объемной скорости (V), дав­ления (Р) и объема (V) при ИВЛ с паузой вдоха:

Тff, — продолжительность вдуоания;

TI продолжительность вдоха:

ТE — продолжительность выдоха:

TC продолжительность дыхатель­ного цикла;

ТIP — продолжительность паузы вдоха.


Представляет несомненный интерес рассмотреть про­цессы, происходящие в легких при наличии или отсутствии паузы вдоха с использованием математической двухкамер­ной модели легких. Характеристиками модели служат об­щие значения растяжимости (Со) и сопротивления (Ro), a также регионарные значения этих параметров: для левой камеры Ci и Ri, для правой камеры Са и R2.


Методика нашего исследования заключалась в расчете и сопоставлении объемов газа (V1, V2), поданных в каж­дую камеру, и возникающих там давлений P1, Р2 (для модели в целом — V0 и Р0). При этом рассмотрены два режима ИВЛ: с паузой на вдохе и без паузы, обеспечи­вающих одну и ту же вентиляцию. Кроме того, исследова­ния основывались на том, что давления на входе в каждую камеру равны между собой, а объемная скорость вдува­ния в модель равна сумме объемных скоростей вдувания газа в каждую из камер:

V0 = V1 + V2.

Чтобы приблизить результаты расчетов к реальной кли­нической ситуации, они были выполнены для следующих пяти комбинаций характеристик камер модели:

модель 1 — в целом имеет типовое значение растяжимо­сти и несколько увеличенное (для получения контрастных результатов) значение сопротивления. Характеристики каждой камеры одинаковы, что соответствует отсутствию легочной патологии;

модель 2 — при прежних значениях характеристик моде­ли в целом моделируется рестриктивно-обструктивная па­тология в левой камере: снижается ее растяжимость и од­новременно увеличивается сопротивление. Изменения ха­рактеристик подобраны так, чтобы постоянные времени камер (тау=RC) сохранили прежнее и равное предыдущей ситуации значение;

модель 3 — сохраняя неизменными значения характери­стик модели в целом, моделируется маловероятная ситуа­ция, при которой снижение растяжимости в левой камере сопровождается уменьшением ее сопротивления; в правой камере характеристики изменяются в обратном направле­нии. Существенная особенность этого случая — резкое раз­личие (в 16 раз) постоянной времени камер;

модель 4 — рестриктивная патология: растяжимость ле­вой камеры по сравнению с правой снижается, но сопро­тивления камер остаются равными между собой и соответ­ствующими первой ситуации. Общие характеристики моде­ли остаются теми же, что и в других ситуациях;

модель 5 — обструктивная патология в правой камере:

при нормальных и одинаковых значениях растяжимости сопротивление правой камеры значительно увеличивается. Общие характеристики модели остаются неизменными.

Количественные значения параметров камер, принятые в расчетах, приведены в табл. 2.


Таблица 2

^ Величины функциональных параметров для исследуемых моделей «легочной патологии»

Параметр

Значение параметров для моделей

1

12

3

4

5

Растяжимость, л/кПа:
















левая камера, C1

0,25

0,10

0,10

0,10

0,25

правая камера, С2

0,25

0,40

0,40

0,40

0,25

общая, С0

0,50

0,50

0,50

0,50

0,50

Сопротивление, - кПа x с/ л
















левая камера, R1

0,80

2,00

0,50

0,80

0,50

правая камера, R2

0,80

0,50

2,00

0,80

2,00

общее, R0

0,40

0,40

0,40

0,40

0,40

Постоянная времени, с:
















левая камера, t1

0,20

0,20

0,05

0,08

0,125

правая камера, Т2

0,20

0,20

0,80

0,32

0,50

общая, т0

0,20

0,20

0,20

0,20

0,20


Результаты расчета приведены в табл. 3. Для режима ИВЛ с паузой вдоха после ее возникнове­ния давления выравниваются: газ из камеры с большим давлением перетекает в камеру с меньшим давлением. Давления выравниваются только в тех случаях, когда в конце вдувания давления в левой и правой камерах не­равны, т.е. в моделях 3, 4 и 5. Конечным результатом этого процесса должно быть установление в каждой каме­ре общего значения, равного Р0 = S/V, т.е. 1,6 кПа. Одна­ко для такого выравнивания требуется некоторое время. Для принятой двухкамерной модели постоянная времени выравнивания имеет вид:

Tв=C1C2 (R1 + R2)/(C1 + С2)

Как известно, для завершения экспоненциального про­цесса выравнивания на 95% требуется интервал, равный трем постоянным времени выравнивания, т.е. для модели 3 — 0,6 с, для модели 4 — 0,38 с и для модели 5 — 0,94 с. Отсюда ясно, что процесс выравнивания давления в каме­рах модели при принятом значении длительности паузы вдоха 0,3 с полностью завершиться не успеет. Поэтому давления в камерах в конце паузы хотя и несколько сбли­зятся, но все же будут различными. Естественно, что и объ­ем в этих камерах в конце паузы также не будет равным (см. табл. 2, значение для моделей 3, 4 и 5).

Результаты расчетов показывают, что при одинаковых характеристиках камер (модель 1) объемы и давления в них будут равными. В этом случае введение паузы вдоха оказывается безрезультатным.

При рестриктивно-обструктивной патологии в одной из камер (модель 2) изменения растяжимости и сопротивле­ния таковы, что их влияния на постоянную времени ка­меры имеют тенденцию к взаимной компенсации: сниже­ние растяжимости уменьшает, а рост сопротивления уве­личивает постоянную времени камеры. Если комбинация этих факторов приводит к равенству постоянных времени обеих камер, как в данном случае, то давление в конце вдувания в них становится одинаковым и не требует выравнивания. Однако объемы вентиляции камер не равны между собой и прямо пропорциональны их растяжимости. Отсутствие выравнивания давления отнюдь не означает равномерного внутрилегочного распределения объемов, но делает бесполезным применение паузы вдоха.

В модели 3 рестриктивно-обструктивная патология тако­ва, что сопровождается неравенством постоянных времени камер. В конце вдувания объемы и давления в камерах различны. Поэтому при ИВЛ с паузой вдоха происходит выравнивание давления, которое, однако, за длительностью паузы при использованных в расчете значениях парамет­ров завершается лишь на 78%. Так как в конце вдувания большее давление было создано в камере, в которую был введен меньший объем, то происходит парадоксальное яв­ление: выравнивание давления сопровождается углублением неравенства распределения объемов. Поэтому ИВЛ без паузы на вдохе, с точки зрения равномерности вентиляции, более благоприятна, поскольку высокое сопротивление «сдерживает» поступление газа в камеру с большей растя­жимостью.

Показатель вентиляции

Модель 1

Модель 2

Модель 3

Модель 4

Модель 5




левая каме­ра

правая камера

модель в це­лом

левая камера

правая камера

модель в це­лом

левая камера

правая камера

модель в целом

левая камера

правая камера

модель в целом

левая камера

правая камера

модель в целом

Показатели вентиляции

в конце вдувания:



























































































Скорость вдувания, V, л/с:














































без паузы вдоха


0,400


0.400


0,800


0,160



0,640


0,800


0,240


0,560


0,800


0,187


0,613


0,800


0.457


0,343


0,800

с паузой вдоха

0.570

0,570

1,140

0,228

0,912

0,140

0,380

0,760

1,140

0,281

0,859

1,140

0,676

0.464

1,140

Дыхательный объем, V, л:














































без паузы вдоха

0,400

0,400

0,800

0,160

0,640

0,800

0,240

0,560

0,800

0,187


0,613

0,800

0,457

0,343

0,800

с паузой вдоха

0,400

0,400

0,800

0,160

0,640

0,800

0,267

0,532

0,800

0,198

0,602

0,800

0,474

0,326

0,800

Давление в камере, Р, кПа:














































без паузы вдоха

1,60

1,60



1,60

1,60



2,40

1,40



1.87

1,53



1,83

1,37



с паузой вдоха

1,60

1,60



1,60

1,60



2,66

1,33



1,97

1,51



1,89

1,29



Давление на входе в модель, Ро, кПа














































без паузы вдоха





1,92





1,92







о ко







2,02







2,06

с паузой вдоха



— —

2,06

— —



2,06





2,85





2,19





2,23

Показатели вентиляции в конце паузи вдоха:














































Давление в камере Рп, кПа

Вследствие равенства давлений в камерах в конце вдувания перераспределение давлении и объемов в камерах не происходит

1,837

1,540



1,636

1,591



1,710

1,470



Дыхательный объем в камере, Vп, л

0,186

0,614

0,800

0,165

0,635

0,800

0,428

0,372

0,800

Давление на входе в модель, Роп, кПа





1,780





1.610





1,660


В модели 4 при моделировании рестриктивной патологии сравнительно небольшая разница давлений в камерах за время паузы при ИВЛ почти полностью нивелируется. Однако и в этом случае нельзя говорить о положительном влиянии паузы на равномерность вентиляции, поскольку выравнивание давления, как и в модели 3, сопровождается перетеканием газа из камеры с меньшим объемом в камеру с большим объемом, т.е. дифференциация объе­мов в камерах по сравнению с ИВЛ без паузы вдоха толь­ко усиливается.

Наконец, в модели 5 (обструктивная патология) равен­ство растяжимостей камер приводит к тому, что вырав­нивание давлений одновременно означает и выравнивание объемов. Однако для полного выравнивания может потре­боваться столь длительная пауза, которая практически не­осуществима. При использованных в расчете значениях за паузу, равную 0,3 с, выравнивание давлений обеспечива­ется на 62%, по и при этом ИВЛ с паузой вдоха лишь незначительно уменьшает разницу в объемах камер по сравнению с ИВЛ без паузы вдоха.

Если в качестве критерия равномерности внутрилегочного распределения вентиляции принять выравнивание объема и давления газа в участках легких с различными комбинациями растяжимости и сопротивления, то исполь­зованная методика не выявляет заметных преимуществ ИВЛ с паузой вдоха. Действительно, хотя пауза вдоха стимулирует выравнивание давлений в различных частях легких, однако за реально применяемое время паузы пол­ного выравнивания не происходит; выравнивание давления в общем случае не только не равнозначно выравниванию объемов, но в ряде ситуаций приводит к дальнейшему увеличению неравномерности распределения объемов; не­которое незначительное преимущество ИВЛ с паузой вдо­ха проявляется только в случае обструктивной патологии частей легких.

Приведенные выводы не исключают целесообразности применения паузы вдоха. Следует, вероятно, согласиться с мнением Loh, Sykes (1978), которые считают возмож­ности использования и регулирования по времени паузы в конце вдоха не обязательными, но желательными для универсальных аппаратов ИВЛ.

2. Скорость вдувания газовой смеси в легкие должна быть оптимальной. Чем выше скорость вдувания при заданном дыхательном объеме, тем меньше будет время вдоха, а следовательно, тем ниже бу­дет среднее внутрилегочное давление.

Скорость вдоха зависит от величины дыхательного объе­ма и частоты дыхания. Кроме того, на величину скорости потока газа при вдохе оказывает решающее влияние отно­шение длительности вдоха к длительности выдоха. Если, например, дыхательный объем равен 500 мл, частота дыхания 20 в минуту, а отношение длительности вдоха к длительности выдоха 1:2, то продолжительность одного дыхательного цикла 3 с, время вдоха 1 с, а скорость вду­вания 500 мл/с, или 30 л/мин. При заданных дыхательном объеме и частоте дыхания изменить скорость вдувания можно изменением отношения длительности вдоха и вы­доха.

С позиции уменьшения среднего внутрилегочного давле­ния и тем самым уменьшения отрицательного влияния ИВЛ на гемодинамику можно было бы считать, что чем выше скорость вдоха, тем лучше. Однако многочисленные исследования показали, что высокая скорость вдоха усугубляет неравномерность альвеолярного распределения газа. Так, по данным Б.П. Максимова (1979), наибольшая неравномерность вентиляции отмечена при ИВЛ с дли­тельностью фазы вдоха, составляющей 15% от времени всего дыхательного цикла (т.е. при отношении длитель­ности вдох/выдох примерно 1:6), и, напротив, равномер­ность вентиляции была оптимальной, когда длительность фазы вдоха составляла 33% от времени всего дыхатель­ного цикла (т.е. при отношении длительности вдох/выдох как 1:2). Spalding, Smith (1978) наблюдали заметное увеличение функционального мертвого пространства при уменьшении длительности вдоха и, следовательно, увели­чении скорости потока газа при ИВЛ у детей. Lachmann и соавт. (1978) экспериментально установили, что при тя­желых поражениях легких наилучшие результаты окснгенации крови при ИВЛ удается получить при отношении длительности вдоха и выдоха, равном 4:1.

При выборе оптимальной величины скорости вдоха су­ществуют две противоположные тенденции: одна — увели­чивать скорость вдоха в интересах гемодинамики, дру­гая — уменьшать ее в интересах легочного газообмена. Еще в 1948 г. Cournand и соавт. установили, что опти­мальная длительность вдоха в обычных условиях со­ставляет 1 с, а среднефизиологическая скорость — 30 — 50 л/мин. При такой скорости вдоха А.П. Зильбер и соавт. наблюдали оптимальные показатели легочных функций, увеличение же скорости вдоха на 30 — 40% за счет укорочения длительности вдоха приводило к ухудше­нию газо- и гемодинамики в легких и нарушению легоч­ных функций.

Из изложенного выше можно сделать вывод, что диапа­зон регулирования величины отношения длительности вы­доха и вдоха у аппаратов ИВЛ должен иметь границы от 1 до 3, а оптимальной величиной, если этот параметр нерегулируем, следует считать величину, равную 2. Имен­но такую величину предлагают в числе основных требова­ний к аппаратам ИВЛ Loh, Sykes (1978). Лучшие аппара­ты ИВЛ (в том числе отечественные) допускают регули­ровку данного параметра в оптимальных пределах.



5. Различные формы скорости вдувания, обеспечивающие подачу одного и того же дыхательного объема: слева направо — постоянная, синусоидальная, возрастающая, убывающая, V1 — средняя скорость.


Выше рассмотрено влияние на гемодинамику и газооб­мен скорости потока газа, когда этот параметр имеет по­стоянную величину в течение всей фазы вдоха (т.е. когда форма волны вдыхаемого потока имеет характер прямо­угольного импульса, как, например, у отечественных аппа­ратов РО). Однако это лишь частный случай. Аппараты ИВЛ генерируют потоки газа с разными формами графи­ческих кривых вдыхаемого потока: нарастающей (так на­зываемой «наклонной», «пилообразной»), как у аппаратов «Энгстрем»; убывающей («отрицательно-наклонной», «об­ратной пилообразной» и т.п. различных авторов), как, на­пример, у аппарата «Барнет-вентилятор»; синусоидальной, как, например, у аппарата «Спиромат-650» (рис. 5).

Herzog, Norlander (1968) — создатели аппарата «Энгстрем» — высказали мнение, что оптимальные результаты для легочного газообмена при ИВЛ можно получить при нарастающей скорости вдыхаемого потока, свойственной этому аппарату. Наиболее интенсивные исследования в этом направлении были проведены в 70-е годы, когда по­явились аппараты ИВЛ, позволяющие выбирать форму вдыхаемого потока (например, «Сервовентилятор-900», «Ииевмотрон-80»). Однако результаты исследований ока­зались весьма противоречивыми. Так, Johansson и соавт. (1975) установили, что общее влияние на распределение потока газа в легких и на легочную перфузию у обследуе­мых лиц (без легочной или сердечно-сосудистой патоло­гии) в случае ИВЛ при нарастающей или постоянной скорости было лучше, чем при убывающей; этот эффект был заметнее при более высокой частоте дыхания и малой паузе в конце вдоха. В легочной механике у больных с хро­ническими заболеваниями легких, как и у больных без ле­гочной патологии, выявлено некоторое преимущество убы­вающей скорости вдыхаемого потока газа. Наконец, при исследовании гемодинамических показателей было обнару­жено очень малое влияние различных форм скоростей вды­хаемого потока. Авторы объясняют это эффектом «филь­трации» в сложной легочной структуре с участками различных сопротивлений, приводящим к своего рода «демп­фированию», смягчению различий волн и к образованию в конечном итоге формы движения газа в легких, близкой к синусоидальной.

Baker и соавт. (1977) нашли, что убывающая скорость потока при ИВЛ наиболее благоприятна для большинства физиологических параметров; применение нарастающей скорости потока приводит к увеличению легочного шунтирования крови; синусоидальная и прямоугольная формы скорости потока, мало различаясь по влиянию на физио­логические показатели, занимают промежуточное положе­ние между влиянием убывающей и нарастающей форм ско­рости потока. В противоположность указанным авторам А.П. Зильбер и соавт. (1977) показали, что при ИВЛ любой длительности наиболее целесообразна нарастающая скорость потока, с «пиком» в конце вдоха.

Можно было бы продолжить противопоставление ре­зультатов и мнений различных исследователей. Однако все единодушны в одном: различия во влиянии на основные физиологические показатели разных форм скорости вды­хаемого потока, даже если они существуют, непостоянны и несущественны. Похоже, что возможность регулирова­ния формы скорости вдыхаемого потока больше служит «престижности» аппаратов и отражает желание быстрее реализовать технические новшества, а не удовлетворить объективные медицинские потребности.

Во время ИВЛ (особенно длительной) врач всегда стре­мится найти, хотя бы эмпирически, оптимальные парамет­ры вентиляции. В связи с этим целесообразно, чтобы со­временный универсальный аппарат ИВЛ дал возможность врачу выбрать оптимальную для данного больного форму скорости вдыхаемого потока.

3. Выдох должен осуществляться без со­противления, т.е. после окончания вдоха должно обеспечиваться свободное и быстрое падение давления в системе аппарат — легкие до уровня атмосферного.

В современных аппаратах ИВЛ предусматривается возможность выпуска выдыхаемого газа через клапан, обла­дающий минимальным сопротивлением. В лучших моделях это сопротивление не превышает 0,6 см вод.ст.

Исключение составляют случаи, когда повышение со­противления выдоху, создающее положительное давление в конце выдоха (ПДКВ, PEEP), имеет терапевтические цели. Ряд клинических и экспериментальных исследова­ний показал, что ИВЛ с перемежающимся положительно-положительным давлением (т.е. с ПДКВ), сопровождаю­щаяся увеличением функциональной остаточной емкости легких, улучшает вентиляционно-перфузионные соотноше­ния и уменьшает венозное шунтирование [Кассиль В.Л. и др., 1975; Perel et al., 1978]. Положительное давление в конце выдоха уменьшает эффект преждевременного экспи­раторного закрытия дыхательных путей, поддерживает проходимость воздухоносных путей, препятствует спадению альвеол и образованию ателектазов [Ashbaugh, 1973].

Говоря о положительном влиянии ИВЛ с ПДКВ, нельзя игнорировать отрицательные эффекты способа, связанные с повышением внутрилегочного давления.

Johansson и соавт. (1972) установили, что ИВЛ с ПДКВ приводит к снижению общего кровотока на 26% и повы­шению давления в системе воротной вены. Hedenstierna и соавт. (1979) при ПДКВ, равном 20 см вод.ст., отме­чали снижение легочного кровотока в 2 — 3 раза с выра­женными нарушениями равномерности его распределения (смещение кровотока от центра легких к периферии). Fewell и соавт. (1980) при ИВЛ с ПДКВ обнаружили умень­шению давления в системе воротной вены. Hedenstierna объемов правого и левого желудочков и снижение сердеч­ного выброса за счет уменьшения венозного возврата крови.

И все же способ ИВЛ с ПДКВ остается показанным при некоторых клинических ситуациях, например, как счи­тают В.Л. Кассиль и Н.М. Рябова (1977), у больных с ухудшением механических свойств легких, с нарушением вентиляционно-перфузионных отношений и с увеличенным венозным шунтнрованием, когда вдыхание гипероксической смеси не в состоянии корригировать гнпоксемию. Bergmann и Necek, делая программный доклад на VII Конг­рессе анестезиологов и реаниматологов ГДР (1978), так­же рекомендовали этот способ в ряде случаев при условии регулирования давления в конце вдоха в зависимости от величины легочного шунтнровання, статической растяжи­мости легких и Рао2.

В совместном докладе Kuckelt и соавт., Г.А. Петракова и В.Л. Кассиля на упомянутом конгрессе было показано, что величины ПДКВ (от 5 до 20 см вод.ст.) должны при­меняться при ИВЛ в зависимости от оптимизации статической тораколегочной растяжимости; при этом сделан вы­вод, что ПДКВ выше 20 см вод.ст., не оказывая положи­тельного влияния на растяжимость легких, ухудшает гемодинамику и нарушает транспорт кислорода.

При тяжелых формах респираторного дистресс-синдрома (например, при геморрагической гриппозной пневмо­нии) мы предлагаем применять ИВЛ с так называемым оптимальным ПДКВ.

Суть метода заключается в следующем. Известно, что величины легочного шунта, не превосходящие 15%, явля­ются достаточно удовлетворительными. Расчеты показыва­ют, что если при вдыхании 100% О2 величина Рао2 дости­гает 400 мм рт. ст., величина легочного шунта составляет примерно 15%. Следовательно, задача состоит в том, что­бы найти такой режим ИВЛ, при котором величина Рао2 у больного составляла бы примерно 400 мм рт. ст. при вен­тиляции 100% кислородом, а затем, учитывая отрицательные эффекты длительной ингаляции гипероксических смесей, уменьшить концентрацию O2 до приемлемых ве­личин (40 — 50%).

В условиях полной адаптации больного к аппарату ИВЛ при подаче 100% кислорода начинают постепенно повы­шать давление конца выдоха, увеличивая его каждый раз на 5 см вод.ст. Через 20 мин после очередного повыше­ния исследуют Pao2 и Расо2, полагая, что указанное вре­мя достаточно для установления нового уровня газов кро­ви под влиянием измененного режима ИВЛ. Если Рао2 не достигает 400 мм рт. ст., то производят очередное повы­шение ПДКВ, показатель же Расо2 служит основанием для коррекции вентиляционных объемов. Таким образом, интервалы времени между каждым повышением ПДКВ со­ставляют приблизительно 30 мин. Одновременно тщатель­но наблюдают за состоянием артериального и централь­ного венозного давлений, регулируя на этой основе темп внутривенных инфузий плазмозамещающих растворов и вазопрессорных средств.

Существует несколько способов создания ПДКВ. Один из способов состоит в увеличении сопротивления выдоху с помощью специального крана в линии выдоха аппарата. Такой кран входит в состав ряда отечественных аппара­тов ИВЛ. При другом способе используется выдох с пре одолением давления, создаваемого специальными клапана­ми или погружением конца шланга выдоха в воду на опре­деленную глубину. Можно заметить, что при включении сопротивления выдоху (рис. 6, г) объемная скорость вы­доха уменьшается (сравните с рис. 6, а), а время динами­ческой фазы выдоха увеличивается, паузы после выдоха нет; если увеличить продолжительность фазы выдоха, то можно снизить давление в конце выдоха до нуля. При втором способе — включении противодавления — кривая объ­емной скорости (рис. 6,в) сохраняет приблизительно такой же вид, как при вентиляции с перемежающимся поло­жительно-нулевым давлением, по основание кривой давле­ния смещено по осп ординат на величину ПДКВ. Сравни­тельные преимущества способов ПДКВ пока еще недоста­точно обоснованы. Однако включение противодавления чаще используют при преобладающих расстройствах легоч­ной диффузии («шоковое легкое», «респираторные дистресс-синдромы»), а увеличение сопротивления выдоху при­меняют для уменьшения преждевременного экспираторно­го закрытия дыхательных путей при обструктивных синд­ромах.



6. Функциональные кривые при ИВЛ с пассивным выдохом (а), с активным выдохом (б), с положительным давлением в конце выдоха, полученным с помощью клапана ПДКВ (в) и крапа сопротивления выдоху (г).

V — объемная скорость; Р — давление на выходе аппарата; VT — дыхательный объем.


К способу ИВЛ с ПДКВ (особенно при «сеансном» при­менении ПДКВ) примыкает способ периодического раз­дувания легких (так называемые искусственные глубокие вздохи). Мнение о том, что нормальное дыхание есть ды­хание равномерное, со стабильной глубиной вдохов, было опровергнуто работами Mead, Collier (1959), а также Egbert и соавт. (1965) и Ferns, Pollard (1966).

Уменьшение растяжимости легких при «монотонной» вен­тиляции с современных позиций можно объяснить про­грессирующим коллабированием «работающих» альвеол из-за расходования в них сурфактантов. Для раскрытия резервных альвеол, в которых происходило накопление сурфактантов, необходимо дополнительное дыхательное усилие — гиперинфляция, сопровождающаяся увеличением функциональной остаточной емкости легких. Периодиче­ская гиперинфляция — обязательный компонент нормаль­ного дыхания человека.

В современных моделях аппаратов ИВЛ периодическая гиперинфляция достигается разными способами. Так, в ап­парате «Энгстрем ЕКС-2000» используется режим глубо­ких вздохов, при котором на каждые 100 или 400 обычных вдохов приходится 2 вдоха двойного объема. Однако та­кой способ не может считаться оптимальным. Анестезио­логи, которые принимали участие в операциях на открытой грудной клетке, знают, что хорошее расправление легкого может быть достигнуто при вентиляции вручную не про­сто увеличением дыхательного объема, а препятствием расправлению дыхательного мешка на выдохе, т.е. созданием ПДКВ. Garrard, Shah (1978) считают, что положительное давление на выдохе является простым и эффективным ме­тодом увеличения функциональной остаточной емкости при временном и обратимом снижении объема легких.

В аппарате «Спиромат-661» способ раздувания легких обеспечивается регулируемым увеличением давления вы­доха один раз на каждые 100 вдохов в течение 3 дыхатель­ных циклов. В аппарате «Спиромат-760» периоды разду­вания повторяются чаще — через каждые 50 вдохов. В оте­чественных аппаратах РО-5 и РО-6 имеется система авто­матического раздувания, которая через каждые 8 мин на 2 — 3 дыхательных цикла включает сопротивление выдоху, что вызывает нарастающую задержку в легких дыхатель­ного газа и кратковременное увеличение функциональной остаточной емкости легких. Это приводит к кратковремен­ному возрастанию давления в конце выдоха и конце вдо­ха на 8 — 10 см вод.ст.

4. В фазе выдоха может быть применено отрицательное давление. Снижение среднего внутрилегочного давления до нуля, а при необходимости получение отрицательного давления можно обеспечить раз­режением при выдохе, т.е. полным или частичным принудительным отсасыванием газа во время выдоха (так на­зываемый активный выдох, или вентиляция с перемежаю­щимся положительно-отрицательным давлением, ВППОД, NEEP).

Целесообразность отрицательного давления на выдохе дискутируется еще со времени так называемого пульмоторного диспута: в 20-е годы крупный американский физио­лог Гендерсон возразил против использования в немец­ком аппарате «Пульмотор» фазы отрицательного давления. Однако многие клиницисты и физиологи высказались в пользу активного выдоха [Неговский В.А., Гаевская М.С., 1956; Steiner et al., 1965; Lissac et al., 1977].

Применение отрицательного давления на выдохе снижа­ет среднее внутрилегочное давление в результате того, что: а) вдох начинается при давлении в легких ниже атмо­сферного, и поэтому альвеолярный «пик давления» ниже, чем если бы вдох с тем же дыхательным объемом был на­чат при атмосферном давлении; б) появляется пик отри­цательного давления на выдохе. Среднее отрицательное внутрилегочное давление суммируется со средним положи­тельным внутрилегочным давлением, вследствие чего значительно уменьшается абсолютная величина последнего (см. рис. 6,6). По мнению Frey, Stoffregen, наиболее бла­гоприятным результатом суммирования будет такой, когда среднее внутрилегочное давление станет равным нулю; скорость выдоха можно увеличить применением отрицательного давления, что существенно в случаях повышен­ного сопротивления выдоху.

Кроме уменьшения среднего внутрилегочного давления, фаза отрицательного давления на выдохе непосредственно способствует увеличению венозного возврата, как бы вос­станавливая присасывающий эффект «грудной помпы», свойственный спонтанному дыханию. Hubay и соавт. (1955) обнаружили увеличение венозного возврата на 33% при нормоволемии и на 100% при гиповолемии. Пик отри­цательного давления не должен быть слишком большим.

Вполне достаточно, чтобы он составлял 1/3 — 1/2 — величины пика положительного давления, т.е. в среднем 5 — 7 см вод.ст.

При некоторых заболеваниях легких, сопровождающих­ся потерей эластических свойств бронхов (деструктивный бронхит, диффузный пневмосклероз, обструктивная эмфи­зема легких), применять отрицательное давление на вы­дохе нужно чрезвычайно осторожно. При этих заболеваниях стенки бронхов малого калибра становятся дряблыми и, следуя закону Бернулли, в ответ на высокое разреже­ние «во рту» легко спадаются, давая хорошо известный симптом «воздушной ловушки» («Cheak-valve» английских авторов) и увеличивая эффект экспираторного закрытия дыхательных путей (ЭЗДП).

Не следует считать, что отрицательное давление на выдохе улучшает легочный газообмен. Наши исследования показали, что введение отрицательного давления в фазу выдоха не увеличивает элиминацию углекислого газа. Бо­лее того, оно оказывает неблагоприятное влияние на рав­номерность распределения вентиляции, о чем свидетель­ствует патологический характер капнографической кривой (отсутствие альвеолярного «плато», а также удлинение времени денитрогенации, обнаруженное нами при азотографии. Sykes и соавт. (1970) установили, что разрежение на выдохе — 10 см вод.ст. сопровождалось резким увеличе­нием венозной примеси (до 26% минутного объема серд­ца). Они объяснили это увеличением внутрилегочного объема крови на высоте выдоха, когда вентиляционный объем легких наименьший, а также отеком под действием градиента давлений по обе стороны альвеоло-капиллярной мембраны и коллапсом альвеол. Мы разделяем мнение В.Л. Кассиля и Н.М. Рябовой (1977), а также А.П. Зильбера (1978), что при ряде заболеваний (пневмония, ате­лектаз, отек легких, обструктивные легочные заболевания» переломы ребер) следует отказаться от применения актив­ного выдоха. В то же время, как показал наш опыт, а так­же опыт других исследователей [Уваров Б.С. и др., 1965; Чепкий Л.П. и др., 1967], активный выдох целесообразен при заболеваниях, сопровождающихся тяжелыми расст­ройствами кровообращения.

Измерение давления и разрежения в системе аппарат — больной не представляет трудностей. Нужно, однако, по­мнить, что показания измерительных приборов аппаратов ИВЛ представляют собой величину давления «во рту», ко­торая часто отличается от величины давления в легких. Разница тем больше, чем выше сопротивление дыхатель­ных путей.

Описанное выше представляет собой в основном общий подход к рациональному выбору параметров ИВЛ. Ряд конкретных вопросов методики и выбора этих параметров следует решать индивидуально у каждого больного, сооб­разно характеру его дыхательной и прочей патологии.


1   2   3   4   5   6   7   8   9   ...   18

отлично
  1
Ваша оценка:

Похожие:

Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon Искусственная вентиляция лёгких

Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon 1. Что такое искусственная вентиляция лёгких?

Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon Традиционная искусственная вентиляция лёгких у больных с интраабдоминальной гипертензией

Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon «Неинвазивная искусственная вентиляция легких – современная технология респираторной поддержки»

Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon Экзаменационные вопросы по детской хирургической стоматологии 2012-2013 уч. Год особенности клинического
Принципы оказания неотложной помощи детям. Особенности проведения реанимационных мероприятий у детей...
Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon Искусственная и вспомогательная вентиляция лёгких в анестезиологии и интенсивной терапии руководство

Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon Гст гарвардский степ-тест двс дисвегетативный синдром ддт диадинамические токи дмв дециметроволновая

Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon Искусственная микроклиматотерапия

Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon Клиническая классификация туберкулеза. Первичный туберкулез
Считалось, что вначале туберкулезный процесс поражает верхушки легких (1 стадия), затем он распространяется...
Бурлаков Р. И., Гальперин Ю. Ш., Юревич В. М. Б 90 Искусственная вентиляция легких (принципы, ме­тоды, аппаратура) icon Высокочастотная вентиляция (вч ивл): вчера, сегодня, завтра

Разместите кнопку на своём сайте:
Медицина


База данных защищена авторским правом ©MedZnate 2000-2016
allo, dekanat, ansya, kenam
обратиться к администрации | правообладателям | пользователям
Медицина