|
Скачать 1.26 Mb.
|
^ Чтобы уловить изменения в структуре хроматина на уровне индивидуальных генов, необходимо изучать растянутые интерфазные хромосомы. В обычных клетках это невозможно, потому что нити интерфазного хроматина слишком тонки и запутаны. Благодаря же явлению политении на интерфазных хромосомах отчетливо видны многочисленные поперечные полосы, частота чередования которых позволяет предположить, что они соответствуют индивидуальным генам. ^ . Они не изменяют своей формы на протяжении всего митотического цикла и достигают длины до 0,5 мм, а толщины до 25 мкм. Они встречаются, например, в слюнных железах двукрылых (мух, комаров), в макронуклеусе инфузории и в тканях завязи бобов. Чаще всего они видны в гаплоидном числе, т.к. гомологичные хромосомы бывают тесно спарены. Клетки с такими хромосомами вырастают до необычно большого размера. Возникают политенные хромосомы вследствие многократно повторяющегося процесса редупликации ДНК. При этом разные участки ДНК редуплицируются в разной степени. Большинство генетически информативных областей реплицируются 1000 раз, а некоторые - более чем 30 тыс. раз. При этом циклы редупликации ДНК не сопровождаются делением клетки. По существу, политенные хромосомы представляют собой пучки множества неполностью разделенных, тесно прилежащих друг к другу индивидуальных хроматиновых нитей. В частности, политенные хромосомы слюнных желез личинки Drosophila содержат 1024 таких нити. Итак, интерфазные политенные хромосомы хорошо видны в световой микроскоп, хроматиновые петли в них располагаются в линейном порядке, при окрашивании этих хромосом заметны перемежающиеся поперечные полосы: темные - диски и светлые - междисковые участки. Предполагают, что именно диски содержат 1024 плотно уложенных гомологичных петли индивидуального петельного участка и расположенные там гены. Структурная организация и функция ДНК междисковых участков пока что неизвестна. С началом транскрипции генов диски, в которых они содержатся, декомпактизуются, становятся как бы вздувшимися и называются пуфами. Образующая их ДНК упакована гораздо менее плотно. По всей видимости, подобные структурные модификации хроматина, когда происходит его частичная деконденсация, и являются первым этапом активации эукариотических генов. Биохимически пуфы содержат меньше гистона HI, много РНК-полимеразы и, как минимум, один общий негистоновый белок. Возможно, функциональная единица генома и у высших кариот, в том числе у человека, устроена и функционирует так же. ^ Еще одним примером клеток, в которых хорошо различимы транскрипционно активные хромосомы, являются незрелые яйцеклетки, или ооциты. Усиленный синтез РНК в них сопровождается растяжением длинных хроматиновых петель, к которым присоединены многочисленные новообразованные транскрипты, упакованные в РНК-комплексы. Эти, так называемые, хромосомы типа ламповых щеток хорошо видны в световой микроскоп, хотя они не очень конденсированы. Хромосомы типа ламповых щеток появляются во время диплонемы мейоза при образовании половых клеток у большинства позвоночных, беспозвоночных и зеленых водорослей. Содержание ДНК в таких хромосомах соответствует норме, они не политенны (каждая хромосома содержит две молекулы ДНК). В хромосомах типа ламповых щеток, помимо петлеобразной укладки суперспирали в виде ерша, имеются отдельные значительно вытянутые симметричные петли, выступающие над поверхностью основной структуры хромосомной укладки. Обычно во время клеточного деления РНК не синтезируется, а хромосомы типа ламповых щеток, по-видимому, создают запас РНК для последующих стадий развития. Наблюдаемые структуры типа ламповых щеток представляют собой транскрипционно активный хроматин и не являются типичными для соматических клеток. ^ Все, что изложено выше относительно химического состава и структуры хромосом эукариот, типично и для хромосом человека. Некоторой детализации требует информация, позволяющая идентифицировать с большей степенью точности любую хромосому человека. 1956 год - шведы Тио и Леван, англичане Форд и Хамертон установили, что ядро диплоидной клетки человека содержит 46 хромосом – это хромосомный набор или кариотип человека; в 1960 – Мурхед и сотр. (США) разработали метод приготовления препаратов хромосом из кратковременной культуры лимфоцитов; в 1968-70 гг. разработаны методы дифференциального окрашивания хромосом, что позволило однозначно идентифицировать все хромосомы человека - все эти манипуляции производились и производятся только на метафазных хромосомах, ибо они различимы лучше всего, т.к. они максимально укорочены и утолщены, лежат свободно одна от другой, располагаются все в одной плоскости клетки (экваториальной); кроме того, исследуются только те метафазные хромосомы, хроматиды которых отделились друг от друга в области плечей, а в центромерной части еще соединены. Совокупность всех метафазных хромосом, расположенных относительно произвольно в экваториальной плоскости клетки, именуется метафазной пластинкой или просто хромосомным набором. После приготовления препаратов хромосом, которые можно приготовить из всех тканей и клеточных суспензий, содержащих делящиеся клетки (в зависимости от целей важно, конечно, количество метафаз), хромосомы окрашиваются, ибо только после этого их можно различить в световой микроскоп, получить микрофотографию, идентифицировать и, расположив их в определенном порядке, т.е. составив кариограмму, получить целостное представление о кариотипе конкретного человека. Кариограмма - это те же хромосомы метафазной пластинки, но расположенные упорядоченно. Принцип упорядоченности общий для всего вида и определяется идеограммой. Идиограмма - это графическое изображение гаплоидного набора хромосом (можно и диплоидного) и расположение их по группам в зависимости от формы и величины. Группы располагаются в порядке уменьшения величины входящих в них хромосом. В современных цитогенетических лабораториях процесс составления кариограммы компьютеризирован. Наиболее простой способ окрашивания хромосом красителем Гимза или 2%-ым ацетоорсеином, или 2%-ым ацетокармином. При этом хромосомы окрашиваются целиком, равномерно и интенсивно. Окрашенные таким образом хромосомы, согласно Денверской классификации (I960), располагались в идиограмме в зависимости от их длины и нумеровались по парам от 1 до 23. Тогда же Патау предложил разбить 23 пары хромосом на 7 групп от А до G с учетом расположения центромеры. Важным признаком, уточняющим форму хромосомы, стал центромерный индекс: отношение длины короткого плеча к длине всей хромосомы, выраженное в %. Комплекс этих параметров позволял с немалой степенью точности распределить хромосомы по группам, но идентифицировать их, особенно в группах В, С, D, F и G, было невозможно. Однако уже при стандартном (рутинном) равномерном окрашивании хромосом замечали, но оставили без внимания, некоторую неоднородность в плотности окрашивания по длине хромосом. И только позже (1968 г.), когда Касперсон с сотрудниками обнаружили, что после обработки акрихин-ипритом флуоресценция по длине хромосом распределена не равномерно, а в виде сегментов, они показали, что каждую хромосому можно надежно идентифицировать с помощью такого метода дифференциального окрашивания, ибо расположение сегментов для каждой хромосомы строго специфично. Вскоре стало ясно, что очень сходный рисунок сегментации хромосом можно получить и с помощью красителя Гимза, дополнив окрашивание некоторыми приемами. Впоследствии при разных способах обработки хромосом были обнаружены разные типы сегментов. ^ все полученные к тому времени данные по дифференциальному окрашиванию хромосом были сопоставлены и оказалось, что все методы в принципе выявляют одни и те же структуры, но каждый специфичен в отношении определенных сегментов. И обозначать различные типы сегментов решили по методам, с помощью которых они выявляются. ^ - флуоресцирующие после окраски акрихин-ипритом; G - сегменты (Гимза) - выявляются при окрашивании красителем Гимза в сочетании с дополнительными процедурами; Q и G сегменты идентичны, но в большинстве лабораторий предпочитают этот метод, т.к. он не требует использования флуоресцентного микроскопа и эти препараты дольше хранятся; однако, только с помощью Q-метода можно идентифицировать Y-хромосому человека даже в интерфазном ядре; ^ - окрашиваются после контролируемой тепловой денатурации, располагаются между Q и G - сегментами; С - сегменты - конститутивный гетерохроматин, располагается в прицентромерных районах обоих плечей хромосомы; ^ - расположены в теломерных (концевых) районах хромосом. Химическая природа дифференциального окрашивания еще только исследуется. Обсуждаются две основные гипотезы: первая исходит из того, что различные участки хромосом человека отличаются по количественному содержанию пар оснований аденин - тимин и гуанин - цитозин. Отсюда разная степень усвоения ими красителей. В частности, блоки с большим содержанием пар А-Т связываются преимущественно с акрихин-ипритом, следовательно, Q-сегменты соответствуют участкам, богатым А-Т - парами; R-сегменты соответствуют участкам, богатым Г-Ц - парами, которые более устойчивы к тепловой денатурации - это, однако, не объясняет всех особенностей сегментации хромосом. Вторая гипотеза, белковая, исходит из данных о том, что предварительная протеолитическая обработка перед окрашиванием красителем Гимза индуцирует появление G-сегментов, а так как разные по составу участки ДНК связаны с разными белками, можно полагать, что рисунок сегментации зависит от особенностей комплекса ДНК - белок. И все же, что собой представляют полосы - сегменты митотических хромосом, остается загадкой. Даже небольшие тонкие полосы содержат не менее 30 гигантских петель, суммарный нуклеотидный состав которых более 1 млн., нуклеотидов. Возможно, существование таких структурных блоков связано с функционированием эукариотического генома вообще, хотя сами по себе сегменты ничего конкретного о функционировании индивидуальных генов не говорят, ибо в самой тонкой полосе, которую еще можно различить, содержится от 10 до 100 генов. Но то, что картина распределения сегментов в хромосомах почти не изменилась за долгие периоды эволюции (почти каждая хромосома человека имеет своего аналога в кариотипе шимпанзе, гориллы, орангутана), свидетельствует о большом значении пространственной организации ДНК для экспрессии соответствующих генов. Итак, информация, полученная в результате анализа дифференциально окрашенных хромосом, позволяет представить идиограмму хромосом человека следующим образом: ^ - большие метацентрические и субметацентрические хромосомы; 1-ая - самая большая метацентрическая, центромерный индекс (ЦИ) 48 - 49%, в длинном плече вблизи центромеры часто обнаруживается вторичная перетяжка; вторая самая большая субметацентрическая ЦИ 38-40%; 3-я -почти на 20% короче 1 -ой, ЦИ 45-46%, метацентрическая. ^ - большие субметацентрические. ЦИ 24-30%, без дифференциального окрашивания друг от друга не отличаются. Группа С, 6-12 хромосомы и Х-хромосома - средние Субметацентрические хромосомы 6, 7, 8,11 и 12 - относительно субметацентрические, ЦИ - 27-35; 11 и 12 обнаруживают очень сходный рисунок сегментации, однако 11-я хромосома более метацентрическая; в 9-й в длинном плече часто обнаруживают вторичную перетяжку, которая не окрашивается ни акрихином, ни красителем Гимза; Х-хромосома значительно варьирует по длине, в целом сходна с самыми длинными из С-группы, ЦИ - 40,12+2,12, отличить от других при стандартном окрашивании очень трудно. Группа D, 13-15 хромосомы - акроцентрические, ЦИ около 15 -наименьший в кариотипе человека, все они могут иметь вторичную перетяжку на коротком плече или не иметь, а следовательно, иметь спутники или не иметь, спутники могут быть очень большими, а иногда двойными; короткие плечи этих хромосом содержат ядрышковый организатор. ^ - относительно короткие метацентрические и субметацентрические; 16 - ЦИ - около 40, длина вариабельна, в длинном плече в 10% случаев выявляется вторичная перетяжка; 17-я, ЦИ -31; 18-ая хромосома на 5 -10%короче17,ЦИ-26. ^ - мелкие метацентрические, ЦИ - 36-46, при стандартной окраске выглядят одинаково, при дифференциальной - резко отличаются. Группа G, 21, 22, Y-хромосомы - мелкие акроцентрические, ЦИ - 13-33; 21 и 22-ая могут иметь спутники, короткие плечи имеют ядрышковый организатор; Y-хромосома обычно (но не всегда) больше, хроматиды ее длинного плеча, как правило, лежат параллельно одна другой, а у 21 и 22 - ой хромосомы они чаще образуют широкий угол; спутники в Y-хромосоме отсутствуют, ЦИ от 0 до 26. В интерфазных ядрах дистальный участок длинного плеча при окрашивании акрихин-ипритом сильно флуоресцирует и выявляется как яркое пятно, которое называется Y-хроматин. ^ в хромосомах идиограммы показан рисунок сегментации (G - Q , R - сегменты) - позитивные светлые G (они же Q) сегменты, негативные темные - R, районы с варьирующей окраской заштриховываются. Латинскими буквами р и q обозначаются соответственно короткое и длинное плечо, в каждом плече выделяются районы, обозначенные арабскими цифрами, районы нумеруются от центромеры к теломерным участкам хромосомы. А уже внутри района выделяются сегменты (англ. bands), обозначенные арабскими цифрами по такому же принципу, т.е. сегмент имеет свой символ, например, 1 q 32 - второй сегмент третьего района в длинном плече 1 -ой хромосомы (при чтении справа налево). Если в заключение сформулировать интегральную модель хромосомы, то она состоит из единственной двойной спирали ДНК, объединенной с гистонами в нуклеосомы. Некоторые районы этой двойной спирали представлены повторяющимися последовательностями, которые могут быть рассеяны по всему геному. Участки с повторяющимися последовательностями обнаруживают признаки конститутивного гетерохроматина. Участки с уникальными последовательностями пар нуклеотидов проявляют свойства эухроматина, это транскрибирующиеся участки - т.е. собственно гены, они соответствуют светлым G- и темным R-сегментам дифференциально окрашенных хромосом. Благодаря успехам в молекулярной генетике человека разработан принципиально новый метод изучения хромосом – метод флюоресцентной гибридизации in situ (FISH) (in situ – в месте нахождения). Суть этого молекулярно-цитогенетического метода заключается в следующем: 1 – для изучаемой хромосомы или ее конкретного участка готовят комплементарный однонитевой участок ДНК, к которому присоединяют биотин или дигоксигенин, - такой помеченный участок ДНК называется зондом; 2 – на микроскопическом препарате хромосом (in situ) при обработке щелочью хромосомная ДНК денатурирует, т.е. разрываются водородные связи между двумя комплементарными нитями ДНК; 3 – полученным ранее зондом обрабатывают препарат – зонд присоединяется к хромосоме в комплементарном участке ДНК, происходит ренатурация – между зондом и соответствующим участком молекулы ДНК формируются водородные связи; 4 – затем препарат обрабатывают веществом, которое избирательно может присоединяться к биотину или дигоксигенину, после чего к зонду можно присоединить флюоресцентный краситель (или красный – родамин, или зеленый – флюоресцеина изотиоцианат); 5 – теперь с помощью люминесцентного микроскопа можно увидеть окрашенные хромосомы на фоне неокрашенных. Можно использовать не только двух – но и трехцветные варианты метода. ^ , до расшифровки сложных перестроек между несколькими хромосомами. Он требует меньше времени, чем кариотипирование дифференциально окрашенных хромосом. Метод FISH можно применять для диагностики анеуплоидий в интерфазных ядрах – интерфазная цитогенетика. Например, в течение нескольких часов можно получить информацию о количестве 21 - х хромосом в клетках амниотической жидкости (пренатальная – дородовая диагностика синдрома Дауна у плода) – специфический ДНК – зонд для 21 - ой хромосомы покажет в ядрах этих клеток или 2 - е светящиеся точки, что соответствует двум 21-м хромосомам, или три – что выявит трисомию по 21-ой хромосоме. ^ признаков пола у человека В формировании признаков пола выделяют четыре уровня:
Хромосомное определение пола у животных и человека происходит в момент оплодотворения. Для человека это формирование кариотипа 46 XX или 46 ХУ, что определяется гаметой гетерогаметного пола. У человека женский пол гомогаметный, а мужской пол гетерогаметный. У птиц и бабочек, наоборот, самцы гомогаметные, а самки - гетерогаметные. У прямокрылых насекомых самки гомогаметны, с кариотип XX, а самцы гетерогаметны - ХО, у последних отсутствует у-хромосома. ^ у человека начинается с того, что на 3 - й неделе эмбрионального развития в энтодерме желточного мешка появляются первичные зародышевые клетки, которые под действием хемотаксических сигналов мигрируют в область закладки гонад (половых желез). Дальнейшее развитие признаков пола определяется наличием или отсутствием в кариотипе у-хромосомы. ^ . Под контролем у-хромосомы в первичных зародышевых клетках начинает синтезироваться Н-Y-антиген, который кодируется структурным аутосомным геном, контролируемым Y-хромосомой. Для превращения зачатка гонады в семенник достаточно уже малой концентрации Н-Y-антигена. На развитие семенников также оказывает влияние, по меньшей мере, ещё 19 генов: аутосомных и сцепленных с Х-хромосомой. А под действием хориогонического гонадотропина, секретируемого плацентой матери, в семенниках начинают вырабатываться мужские половые гормоны (андрогены) - это тестостерон и 5-дигидро-тестостерон. ^ и развития всего фенотипа по мужскому типу происходит следующим образом. Сцепленный с X-хромосомой ген (Tfm+) кодирует белок-рецептор, который, связываясь с тестостероном, доставляет его в ядра клеток, где тестостерон активизирует гены, обеспечивающие дифференцировку развивающегося организма по мужскому типу, в том числе и развитие семявыносящих путей. У зародыша человека из протока первичной почки формируются два протока: мюллеров и вольфов. У мужчин редуцируются мюллеровы протоки, а вольфовы преобразуются в семенные протоки и семенные пузырьки. При мутации гена Tfm+ и дефекте, рецепторов тестостерона может развиться синдром тестикулярной феминизации. В таких случаях у лиц с мужским кариотипом наружные половые органы развиваются по женскому типу. При этом влагалище бывает укорочено и заканчивается слепым мешком, а матка и маточных трубы отсутствуют. По пропорциям тела такие женщины приближаются к типу манекенщиц. Отмечается аменорея (отсутствие менструаций). В то же время молочные железы развиты нормально. Психологическое развитие у них осуществляется по женскому типу, хотя имеет место мужской кариотип и вместо яичников у них присутствуют семенники, которые располагаются либо в больших половых губах, либо в паховом канале, либо в брюшной полости. Сперматогенез отсутствует. Рецепторы к гормонам имеют не только клетки-мишени тех или иных половых органов, но и нейроны головного мозга. Влияние гормонов на головной мозг начинается уже в эмбриональном периоде, что сказывается в дальнейшем и на особенностях сексуального поведения. Если в кариотипе зиготы отсутствует У - хромосома, формируется женский фенотип без участия специальных регуляторных факторов. При этом из двух протоков, формирующихся из протока первичной почки, вольфов проток редуцируется, а мюллеровы преобразуются в матку и маточные трубы. ^ Организация генома ГЕНОМ - полный состав ДНК диплоидного набора хромосом ядер соматических клеток, т.е. совокупность всех генов и межгенных участков. Таким образом, геном-полный набор инструкций для формирования и функционирования индивида. Общие принципы построения геномов и их структурно-функциональную организацию изучает геномика, которая проводит секвенирование, картирование и идентификацию функций генов и внегенных элементов. Геномика подразделяется на структурную, функциональную, сравнительную, эволюционную и медицинскую. ^ решает прикладные вопросы клинической и профилактической медицины на основе знаний геномов человека и патогенных организмов. В частности, вопросы диагностики наследственных болезней, генотерапии, вирулентности болезнетворных микроорганизмов. Общее количество ДНК в хромосомах ядра соматической клетки человека составляет 6,4 х 109 пар нуклеотидов - это 95% всей ДНК клетки. Внехромосомный геном клетки - митохондриальный, это 0,5% от всей ДНК клетки. Кроме того, небольшое количество ДНК составляют кольцевые молекулы (150 - 20000 пар нуклеотидов) в ядре и цитоплазме. Природа их у человека пока неясна. Кодирующая часть ДНК составляет 3-5% (по другим данным 1-2%), назначение неинформативной части ДНК - неизвестно. В кодирующей части ДНК различают как уникальные гены, т.е. представленные только одной копией, так и избыточные гены, имеющие до 104 копий,- это гены для т-РНК, р- РНК, гистоновых белков. Эти копии расположены рядом друг с другом (тандемно) и разделены идентичными спейсерами. Любые изменения в структуре ДНК- ведут к генетическому полиморфизму. Главная форма генетического полиморфизма – однонуклеотидный полиморфизм, т.е. различие в ДНК разных людей соответствует одной паре нуклеотидов на каждые 1000-2000 нуклеотидов. Таким образом, два человека на 99,9% идентичны по нуклеотидным последовательностям и только 0,1% различий по одному нуклеотиду создает огромные индивидуальные фенотипические вариации. В каждом гене (50-100 тысяч пар нуклеотидов) можно ожидать от 25 до 100 мутаций, которые надо правильно интерпретировать то ли как нормальную вариацию, то ли как этиологический фактор наследственной патологии. Предполагают, что различия по одному основанию между определенными отрезками геномов лежат не только в основе генных болезней/ миссенс-мутации/, но и в основе чувствительности к возбудителям или защиты от них, в основе приспособительных реакций и в то же время наследственного предрасположения к мулътифакториальным болезням. ^ Ген - это информационная структура, состоящая из нуклеотидов ДНК (а у вирусов и РНК), неделимая в функциональном отношении, способная к неограниченной репликации и направляющая развитие и функционирование организма, обеспечивая в том числе и транскрипцию других генов. Обширная многолетняя (1990-2000 гг.) программа "Геном человека", заключающаяся в последовательном секвенировании участков генома человека, установила, что генотип человека - это всего лишь 30000 генов. Сотни генов получены человеком, вероятно, в результате горизонтальной передачи, начиная от бактерий, – у человека и бактерий одинаковы более 600 генов; геном мышей и человека совпадает на 90%; шимпанзе и человека - различается на 1% нуклеотидных последовательностей. В геноме каждый ген может быть представлен несколькими формами – аллелями: в гаплоидном геноме - одним аллелем (любым), в диплоидном – двумя (доминантным и рецессивным), в генофонде популяции – несколькими (более, чем двумя). Если у гетерозигот оба аллеля одинаково активны и каждый участвует в синтезе 50% продукта, считается, что оба имеют равные дозы. Однако, дозы гена могут быть и разные. В крови у гетерозигот по гену серповидноклеточной анемии содержится 65% нормального гемоглобина и 35% аномального (НЬS).Молекулярный механизм разных доз аллельных генов до сих пор неясен. ^ : структурные – транскрибируются во все виды РНК; регуляторные – регулируют процесс транскрипции; модуляторы – изменяют активность структурных генов. Согласно хромосомной теории, каждый ген занимает в хромосоме свое определенное место - локус. Однако, существуют прыгающие или блуждающие гены, которые называются транспозоны (мобильные элементы геномов). У прокариот плазмиды способны переносить генетическую информацию между бактериями, частично или целиком встраиваясь в геном клетки-хозяина. К таким плазмидам относятся факторы F (от английского fertility-плодовитость) и гены устойчивости к лекарственным препаратам в плазмидах R. Но если интеграция плазмиды F в геном клетки-хозяина происходит в определенных местах генома, то гены устойчивости могут встраиваться во многие места хромосомы - такие гены и называются транспозонами. Впервые явление транспозиции было описано у эукариот много лет назад Барбарой Мак-Клинток, проводившей генетические исследования на кукурузе. Сейчас известно несколько систем блуждающих контролирующих элементов эукариот. В частности, контролирующие системы у кукурузы, которые отличаются по своему воздействию на структурные гены, влияя на экспрессию генов, контролирующих окраску семян кукурузы (транспозиция регуляторных элементов осуществляется автономно); транспозоны Drosophila melanogaster, встраивающиеся в Х-хромосому и вызывающие делеции в соседних генах, что приводит к изменению цвета глаз у плодовой мушки; описаны транспозирующие элементы дрожжей. Транспозоны про - и эукариот, по-видимому, не могут существовать вне генома. Неизвестно существует ли взаимосвязь между транспозонами разных видов и сохраняются ли функции транспозиции при перемещении мобильных элементов из одного вида в другие. ^ индуцировать перестройки, обуславливает высокую частоту обмена генетической информацией. Эти элементы способствуют быстрому распространению генов в популяции, управляют процессами дифференцировки, ускоряют эволюцию про - и эукариот. Перемещение определенных последовательностей из одного специфического сайта в другой имеет регуляторный эффект. В случае иммуно - глобулиновых генов в результате рекомбинации меняется содержание генома, создаются активные гены в соответствующих соматических клетках. В нуклеотидной последовательности структурных генов, транскрибируемых в и-РНК, должно быть достаточно кодирующих единиц, чтобы зашифровать 20 аминокислот. Генетический код триплетен, поэтому кодирующих единиц более, чем достаточно - их 64. Последовательность из трех нуклеотидов (триплет) соответствующая одной аминокислоте, называется кодоном, их 61. Три триплета из 64 (УАГ, УАА, УГА) это кодоны-терминаторы, которые располагаются в окончании структурного гена и и-РНК, они транскрибируются, но никогда не транслируются - на них синтез белка останавливается. Так как кодирующих единиц больше, чем кодируемых, то почти каждой аминокислоте соответствует несколько кодонов-синонимов (кроме триптофана и метионина). Эта особенность или свойство триплетного кода называется избыточностью или вырожденность кода. При этом генетический код универсален, т.е. любая аминокислота в любой форме жизни зашифрована одинаково; генетический код специфичен, т.е. каждый триплет кодирует только свою аминокислоту. В пределах одной рамки считывания, что означает транскрипцию информации об одном полипептиде, генетический код неперекрываем - каждый нуклеотид входит в состав только своего триплета. Ген, как единица функции (с этой позиции он называется цистрон), неделим. Однако, в нем выделяют разные составляющие: структурная составляющая - нуклеотид; информационная - триплет (кодон); кроме того, в гене различают единицы мутации (мутон) и единицы рекомбинации (рекон), соответствующие любой паре комплементарных нуклеотидов. В 1977 г. было обнаружено, что гены эукариот состоят из последовательностей ДНК двух типов: экзонов - информативных участков и интронов – неинформативных. Транскрибируется весь ген, но транслируется только его экзонная часть. У эукариот в процессе биосинтеза белка между транскрипцией и трансляцией происходит ряд событий, которые объединяются термином процессинг. Во время процессинга происходит преобразование проинформационной РНК (первичного транскрипта) в информационную: специфические ферменты (рестриктазы) вырезают интронные участки, оставшиеся экзоны сшиваются другими ферментами (лигазами) – это событие называется сплайсингом; в передней части (5'-конец) про-и-РНК формируется группа нуклеотидов, получивших название "колпачок" и предназначенных для узнавания рибосомой и-РНК; в хвостовой части (З'-конец) про-и-РНК формируется полиадениновый "хвост" (100-200 адениновых нуклеотидов), назначение которого пока что неизвестно. После всех этих событий формируется и-РНК, готовая к трансляции. Благодаря экзонно-интронной структуре гена у эукариот в пределах одной полинуклеотидной последовательности структурного гена может быть закодирована информация не об одной молекуле белка, а более. Извлекается эта разная информация из одного гена в результате альтернативного сплайсинга, когда некоторые участки про-и-РНК в одном случае ведут себя как экзоны, а при другом типе сплайсинга оказываются интронами. Ген, являясь единицей функции, сам входит в состав единицы транскрипции, которой после открытия Жакоба и Моно (1961) является оперон. Точнее, единицей транскрипции является последовательность нуклеотидов в опероне от промотора до терминатора включительно. Осуществление транскрипции называется экспрессией гена или его генетической активностью. Таким образом, современное состояние теории гена включает следующие положения: 1.Ген - материальная единица хранения и передачи наследственной информации, является частью молекулы ДНК или у вирусов РНК. 2.Ген в хромосоме занимает определенный локус. Существуют гены с непостоянной локализацией - транспозоны. З.Гены делятся на структурные, регуляторные, гены модуляторы. 4.Структурно-функциональной единицей гена является триплет. 5.Триплеты в гене расположены колинеарно аминокислотам в белке. 6.Гены эукариот имеют интронно-экзонную природу. 7.Единицей транскрипции в геноме является оперон. 8.Гены способны к рекомбинации (как межгенной так и внутригенной) и мутации. 9.Не всякое повреждение гена ведет к мутации, т.к. гены способны к репарации. 10. Дискретные единицы - гены формируют целостную систему взаимодействующих генов – генотип. ^ Митохондрии содержат кольцевую двухцепочечную ДНК, которую обозначили 25-й хромосомой человек (мт ДНК). Гены этой хромосомы не содержат интронов. В каждой соматической клетке содержится около 1000 митохондрий, а суммарная ДНК в них составляете 0,5% от общего количества ДНК в организме. Код мт ДНК слегка отличается от универсального, в этой ДНК транскрибируются обе цепи. ^ был полностью секвенирован в 1981 году. Он содержит 16 569 пар нуклеотидов и кодирует 2 р-РНК, 22 т-РНК и 13 полипептидов. Последние входят в состав ферментных компонентов окислительного фосфорилирования, 66 субъединиц дыхательной цепи кодируется в ядре. ^ . В зиготе насчитывается около 2 500 материнских митохондрий и от 0 до 4 – отцовских. При этом не исключено, что после оплодотворения репликация отцовских митохондрий блокируется. Комбинативная изменчивость мт ДНК (мейоз) отсутствует. Нуклеотидный состав меняется только за счет мутаций. Мутации генов мт ДНК лежат в основе «митохондриальных наследственных болезней». Они передаются из поколения в поколение и имеют некоторые общие черты.
Примером митохондриальных генных болезней являются: атрофия зрительного нерва Лебера, митохондриальные миопатии и др. |