Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка icon

Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка





НазваниеПеревод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка
страница4/36
Н. Н. Алипова
Дата25.03.2013
Размер8.58 Mb.
ТипЛитература
1   2   3   4   5   6   7   8   9   ...   36
^

2.2. Потенциал действия


Функция нервных клеток в организме заключается в получении информации, передаче ее в другие отделы нервной системы, сопоставление информа-




Рис. 2.4. Схематическое изображение потенциалов действия в различных тканях млекопитающих. Ордината: амплитуда внутриклеточного мембранного потенциала; абсцисса: время после начала потенциала действия. Временная шкала для каждого потенциала действия различна

ции от разных источников и, наконец, регуляции деятельности других клеток. Сигналы, поступающие от нервов, вызывают сокращение мышечных клеток. Когда эти два типа клеток «активны» (каждая по-своему), возникает быстрый сдвиг мембранного потенциала в положительном направлении потенциал действия.
^
Временной ход потенциала действия

Потенциалы действия можно зарегистрировать в нервных и мышечных клетках с помощью внутриклеточных электродов (рис. 2.1). Типичные примеры потенциалов действия в различных тканях млекопитающих представлены на рис. 2.4. Во всех этих случаях потенциал резко нарастает от отрицательных значений потенциала покоя до положительного пика, составляющего примерно +30 мВ. Затем потенциал с различной скоростью возвращается к уровню покоя; длительность потенциала действия составляет около 1 мс в нервах, 10 мс в скелетной мышце и более 200 мс в миокарде.

Как показывает рис. 2.5, для потенциала действия характерны несколько фаз. Он начинается очень быстрым сдвигом потенциала в положительном направлении - фазой нарастания, которая продолжается всего лишь 0,2-0,5 мс. Во время фазы нарастания клеточная мембрана теряет свой нормальный заряд («поляризацию»); поэтому фазу нарастания называют также фазой деполяризации. Обычно кривая деполяризации переходит за нулевую линию и мембранный потенциал становится положительным. Эта положительная фаза потенциала действия называется овершутом («перелетом»). Следующая за овершутом фаза, в течение которой восстанавливается исходный потенциал покоя мембраны, называется реполяризацией.

^ 30 ЧАСТЬ I ОБЩАЯ ФИЗИОЛОГИЯ КЛЕТКИ



Рис. 2.5. Временной ход потенциала действия в нейроне; показаны последовательные фазы потенциала действия, описанные в тексте

Следовые потенциалы. Последний участок фазы реполяризации для некоторых видов потенциалов действия бывает замедленным; хорошим примером служит потенциал действия мышцы на рис. 2.4. Приблизительно через 1 мс после начала потенциала действия наблюдается отчетливый перегиб кривой реполяризации; следующее за ним медленное изменение потенциала называется деполяризационным следовым потенциалом. В других тканях, например в нейронах спинного мозга, кривая деполяризации быстро пересекает уровень потенциала покоя, так что на некоторое время потенциал становится более отрицательным, чем потенциал покоя. Это явление получило название гиперполяризационный следовой потенциал (рис. 2.5).
^
Природа потенциала действия

Порог и возбудимость. Каким образом потенциал покоя, обычно поддерживаемый на постоянном уровне посредством только что обсуждавшихся механизмов, нарушается до такой степени, что возникает потенциал действия? Потенциалы действия генерируются при деполяризации мембраны от потенциала покоя до примерно —50 мВ. Механизмы развития этой начальной деполяризации будут рассмотрены позднее (с. 40). Уровень потенциала, при котором деполяризация приводит к потенциалу действия, называется порогом (рис. 2.5). При гаком пороговом потенциале заряд мембраны становится нестабильным; он нарушается посредством внутреннего механизма, который ведет к реверсии полярности-быстрому нарастанию потенциала действия до пика. Это состояние автоматического прогрессирующего нарушения мембранного заряда называется возбуждением. Обычно возбуждение продолжается менее 1 мс. Оно подобно взрыву-протекает мощно, но быстро завершается. После фазы деполя-

ризации наступает процесс восстановления заряда мембраны, присущего состоянию покоя.

Клетки, в которых можно вызвать потенциалы действия, называются возбудимыми. Возбудимость является типичным свойством нервных и мышечных клеток. Клетки каждого типа характеризуются собственным постоянным временным ходом потенциала действия. Он практически не зависит от источника или частоты возбуждения клетки. Поскольку форма потенциала действия постоянна, говорят, что возбуждение протекает по закону «все или ничего».

^ Проводимость мембраны. Во время потенциала действия происходит кратковременное изменение проницаемости мембраны для ионов, определяющих величину потенциала покоя (уравнение 7, с. 14). Когда речь идет об электрических свойствах мембраны, удобной мерой проницаемости мембраны для иона служит проводимость мембраны gion. Проводимость определяется отношением тока Iion к движущему потенциалу. При равновесном потенциале для рассматриваемого иона, Eion (см. уравнение 4, с. 13), движущий потенциал и суммарный ток равны нулю; следовательно, Eion является референтным потенциалом, и отклонение мембранного потенциала Ε от Eion составляет ту разность потенциалов, которая создает ток Iion. Следовательно, проводимость gion описывается уравнением

gion = Iion /(E - Eion) (1)

Теперь мы можем продолжить описание ионных токов во время потенциала действия, пользуясь только что введенным понятием проводимости для индивидуальных ионов.

^ Ионные токи во время потенциала действия. Потенциал покоя, как было показано в предыдущем разделе, очень близок к уровню равновесного потенциала для ионов К+, для которых мембрана в состоянии покоя наиболее проницаема. Если во время потенциала действия внутренняя среда клетки приобретает положительный заряд по отношению к внеклеточной среде, то проводимость мембраны для Na+ (gNa) должна возрастать, потому что только равновесный потенциал для Na+ имеет более положительное значение ( + 60 мВ), чем пик потенциала действия. Это заключение подтверждается экспериментальными данными, согласно которым потенциалы действия могут генерироваться только при высокой внеклеточной концентрации Na+. При недостатке внеклеточного Na+ входящий натриевый ток не может нарастать, независимо от того, в какой мере увеличивается gNa, и, следовательно, не может развиваться деполяризационная фаза потенциала действия. Таким образом, в основе возбуждения лежит повышение проводимости мембраны для Na+, вызываемое ее деполяризацией до порогового уров-

^ ГЛАВА 2. ПЕРЕДАЧА ИНФОРМАЦИИ ПОСРЕДСТВОМ ВОЗБУЖДЕНИЯ 31

ня. Однако в данном случае затрагивается также и проводимость мембраны для К+. Если повышение проводимости для К+ предотвратить некоторыми веществами, например тетраэтиламмонием, мембрана после потенциала действия реполяризуется гораздо медленнее. Это показывает, что повышение проводимости для К+ является важным фактором реполяризации мембраны. Итак, потенциал действия обусловлен циклическим процессом поступления Na+ в клетку и последующего выхода К+ из нее.
^
Кинетика ионных токов во время возбуждения

Регистрация мембранных токов. Деполяризация, возникающая при возбуждении, изменяет проводимость мембраны для различных ионов, что в свою очередь вызывает изменение потенциала. Анализ этого сложного процесса производится путем оценки зависимости проводимости мембраны от мембранного потенциала. Ступенчатый сдвиг потенциала от базальной линии до тестирующего потенциала создается путем подведения к клетке тока, поступающего от электронного усилителя. Производится измерение тока, необходимого для такой «фиксации потенциала»; этот ток представляет собой зеркальное отражение тока, генерируемого клеточной мембраной в ответ на сдвиг потенциала [23, 24]. На рис. 2.6 показан временной ход мембранного тока в этих условиях для двух перехватов Ранвье (с. 47) нерва лягушки. Ступенчатые сдвиги от исходного потенциала до —60, —30, 0, +30 и +60 мВ вызывают комплексные токи, состоящие из суммы Na+и К+-токов. Эти компоненты можно разделить, блокируя один из них специфическим ингибитором.

На рис. 2,6, Б представлены результаты после применения тетраэтиламмония (ТЭА) для блокирования К+-токов [33]; следовательно регистрируемые кривые здесь отражают Na+-токи. Эти Na+токи отрицательны при тестирующих потенциалах ниже +40 мВ; ионы Na входят в нервные волокна. При +30 мВ Na+-токи все еще отрицательны, но их амплитуда мала, а при + 60 мВ, по другую сторону от уровня равновесного потенциала для Na+, направление токов меняется. После каждого деполяризующего сдвига потенциала Na+-ток очень быстро достигает максимума, а затем, если деполяризация поддерживается, возвращается к нулю. Такая инактивация Na+-токов протекает наиболее медленно при небольших деполяризациях и ускоряется с увеличением деполяризации: при +30 мВ Na+-ток практически прекращается уже через 1 мс.

Эксперимент, результаты которого представлены на рис. 2.6, ^ Б, был дополнен (рис. 2.6, Г) блокированием Na+-токов тетродотоксином (ТТХ) [35], чтобы выявить временной ход К+-токов. Зарегистрированные К+-токи положительны в пределах все-

го диапазона тестирующих потенциалов; равновесный потенциал для К+ находится на уровне около — 100 мВ, так что при потенциалах от —60 мВ до + 60 мВ К+-токи выходят из нерва. Амплитуда К+-токов возрастает примерно пропорционально величине деполяризации. Даже при самой большой деполяризации ток начинается с задержкой порядка 0,5 мс; в течение примерно 5 мс ток достигает плато и удерживается на этом уровне в течение всего периода деполяризации. В отличие от Na+-токов, К+-токи в нейронах не инактивируются. Другое важное различие между К+- и Na+-токами состоит в том, что Na+-ток достигает максимума очень быстро после начала деполяризации, тогда как К+-ток возникает после некоторой задержки и затем нарастает относительно медленно.

Na+- и К+-проводимость во время потенциала действия. Временной ход мембранной проводимости для Na+ и К+ можно рассчитать путем деления амплитуд соответствующих токов (рис. 2.6) на разность между тестирующим и равновесным потенциалами для соответствующего иона. Подобные данные можно также получить для небольших скачков потенциала. Пусть, например, известна амплитуда тока, вызванного маленьким скачком потенциала в околопороговом диапазоне. Этот ток протекает по мембранной емкости и идет через мембранное сопротивление, значения которых известны (см. рис. 2.16 и 2.17), вызывая небольшую деполяризацию. Этот потенциал в свою очередь вызывает дополнительный ток, который ведет к дальнейшей деполяризации и значение которого можно вычислить. Продолжая работать с такими небольшими скачками потенциала и временными отрезками, можно воспроизвести временной ход потенциала действия по зарегистрированным потенциалзависимостям амплитуд и временного хода gNa и gK. На рис. 2.7 изображен реконструированный таким образом потенциал действия, а также временной ход gNa и gK. При достижении порогового потенциала gNa резко нарастает; она достигает максимума раньше пика потенциала действия, поскольку уже начинается инактивация Na+-тока, и в течение 1 мс gNa возвращается к исходному уровню. Напротив, gK нарастает медленно, с некоторой задержкой после начала деполяризации. Она достигает своего максимума поздно, когда реполяризация уже наполовину завершена, и затем снижается, так как снижается деполяризация. Таким образом, повышение gK ускоряет вторую фазу реполяризации и служит причиной гиперполяризационного следового потенциала после потенциала действия (рис. 2.7); в то время как gK все еще превышает значение потенциала покоя, мембранный потенциал смещается от уровня покоя по направлению к отрицательному калиевому равновесному потенциалу Ек.

^ 32 ЧАСТЬ I. ОБЩАЯ ФИЗИОЛОГИЯ КЛЕТКИ





Рис. 2.6. А и В. Мембранные токи в миелинизированных аксонах лягушки (перехваты Ранвье; 11—13°С) после ступенчатых сдвигов мембранного потенциала. Мембранный потенциал поддерживался с помощью фиксации потенциала на уровне потенциала покоя, равного — 95 мВ; в момент времени 0 мс мембранный потенциал скачком поднимали до значений, которые указаны справа около записей тока, от —60 до +60 мВ. Сопровождающие скачок потенциала кратковременные емкостные токи вычитались, поэтому регистрируемые токи являются ионными токами. При —60 мВ скачок потенциала остается подпороговым и не вызывает изменений тока. По мере увеличения скачков потенциала сначала возникают отрицательные токи, которые с увеличением потенциала становятся положительными. Б. То же, что на рис. А, но на фоне блокады калиевых токов ТЭА (6 мМ), в результате чего токи почти полностью обеспечиваются ионами Na+. Полярность Na+-токов меняется с отрицательной на положительную между значениями 4-30 и +60 м В; по мере увеличения деполяризации продолжительность Na+-токов уменьшается. Г. То же, что на рис. В, но на фоне блокады натриевых токов тетродотоксином (0,3 мкМ), так что записи соответствуют калиевым токам. При деполяризации К+-токи нарастают медленнее, чем Na+-токи, и продолжаются в течение всего периода деполяризации (по [3] с изменениями)





Рис. 2.7. Мембранные проводимости во время потенциала действия в гигантском аксоне кальмара. gNa и gK рассчитывали, подавая серии деполяризующих скачков потенциала (см. рис. 2.6) (по [6] с изменениями)
^
Инактивация Na+-тока

Из рис. 2.6, Б видно, что Na+-TOK в нерве лягушки начинает убывать примерно через 0,5 мс, несмотря на продолжающуюся деполяризацию. У гомойотермных животных, имеющих более высокую температуру тела, этот промежуток времени еще короче. Характерная для Na+-токa инактивация становится более быстрой по мере увеличения деполяризации, так что ток раньше возвращается к нулю. Однако этот процесс не означает восстановления состояния покоя; если мембрана на короткое время реполяризуется и снова деполяризуется после полной инактивации, в ней практически невозможно снова вызвать Na+-ток. При таком состоянии мемб-

^ ГЛАВА 2. ПЕРЕДАЧА ИНФОРМАЦИИ ПОСРЕДСТВОМ ВОЗБУЖДЕНИЯ 33

раны натриевая система не может быть активирована. Даже после того как на некоторое время восстановится потенциал покоя, Na+-ток можно активировать лишь частично. Только в случае предварительной гиперполяризации аксонной мембраны на 20-40 мВ последующая деполяризация от этого уровня потенциала способна вызвать максимальный Na+-TOK, INa max (рис. 2.8). Если мембранный потенциал на период 10 мс или дольше сместить на 20 мВ от потенциала покоя к более положительному значению, то деполяризация от этого исходного уровня приведет к возникновению только минимального Na+-тока. Следовательно, длительная деполяризация может предотвратить возбуждение; клетки, потенциал которых положительнее уровня от —60, до —50 мВ, утрачивают возбудимость [3, 23]. Продолжительная деполяризация может развиваться в результате метаболических нарушений, например при кислородной недостаточности, а также под влиянием фармакологических препаратов; такая деполяризация способна блокировать генерирование процесса возбуждения.

^ Рефрактерные периоды. Еще одним важным следствием инактивации Na+-системы является развитие рефрактерности мембраны. Это явление иллюстрирует рис. 2.9. Если мембрана деполяризуется сразу после развития потенциала действия, то возбуждение не возникает ни при значении потенциала, соответствующем порогу для предыдущего потенциала действия, ни при любой более сильной деполяризации. Такое состояние полной невозбудимости, которое в нервных клетках продолжается около 1 мс, называется абсолютным рефрактерным периодом. За ним следует относительный рефрактерный период, когда путем значительной деполяризации все же можно вызвать потенциал действия, хотя его амплитуда и снижена по сравнению с нормой. Потенциал действия обычной амплитуды при нормальной пороговой деполяризации можно вызвать только через несколько миллисекунд после предыдущего потенциала действия. Возвращение к нормальной ситуации соответствует окончанию относительного рефрактерного периода. Как отмечалось выше, рефрактерность обусловлена инактивацией Na+-системы во время предшествующего потенциала действия. Хотя при реполяризации мембраны состояние инактивации заканчивается, такое восстановление представляет собой постепенный процесс, продолжающийся несколько миллисекунд, в течение которых Na+-система еще не способна активироваться или же активируется только частично. Абсолютный рефрактерный период ограничивает максимальную частоту генерирования потенциалов действия. Если, как это показано на рис. 2.9, абсолютный рефрактерный период завершается через 2 мс после начала потенциала действия, то клетка может воз-




Рис. 2.8. Потенциалзависимая инактивация Na+-системы. По оси абсцисс отложены величины отклонения мембранного потенциала от потенциала покоя (—60 мВ). От каждого из этих исходных значений потенциала мембрану деполяризовали до —16 мВ и по оси ординат откладывали отношения возникающих максимальных Na+-TOKOB (lNa max) к величине lNa maxl, соответствующей полной активации Na+-системы (по [15] с изменениями)






Рис. 2.9. Рефрактерность после возбуждения. В нерве млекопитающего вызван потенциал действия (слева), после чего с различными интервалами наносили стимулы. Сплошной красной линией показан пороговый уровень потенциала, а черными прерывистыми линиями-деполяризация волокна до порогового уровня. В абсолютном рефрактерном периоде волокно невозбудимо, а в относительном рефрактерном периоде порог его возбуждения превышает нормальный уровень

буждаться с частотой максимум 500/с. Существуют клетки с еще более коротким рефрактерным периодом, в них частота возбуждения может доходить до 1000/с. Однако большинство клеток имеет максимальную частоту потенциалов действия ниже 500/с.

34 ЧАСТЬ I. ОБЩАЯ ФИЗИОЛОГИЯ КЛЕТКИ
^
Ионные токи во время следовых потенциалов

Во многих клетках после быстрой деполяризации, которая соответствует потенциалу действия, развиваются де- или гиперполяризационные следовые потенциалы (рис. 2.4 и 2.5). Природа таких следовых потенциалов может быть разной; кратко опишем два наиболее важных типа.

Кратковременный гиперполяризационный следовой потенциал наблюдается сразу после реполяризации во многих нервных клетках и в некоторых клетках миокарда (рис. 2.5). Этот следовой потенциал представляет собой избыточную реполяризацию; когда во время фазы реполяризации потенциал достигает уровня покоя, gK еще не возвращается к своему исходному уровню (рис. 2.7), т. е. gK в отличие от gNa превышает уровень покоя. Следовательно, мембранный потенциал ближе подходит к значению Ек, чем это было в покое. Возникающая в результате гиперполяризация затухает по мере спада повышенного уровня gK. Такой механизм кратковременной гиперполяризации после потенциала действия участвует в развитии ритмического возбуждения; мы вернемся к нему ниже (с. 48).

Длительные гиперполяризационные следовые потенциалы, которые суммируются при достаточно высокой частоте возбуждения, особенно хорошо выражены в тонких нервных волокнах позвоночных-волокнах группы IV. Такие длительные гиперполяризационные следовые потенциалы обеспечиваются электрогенным Na+-насосом (с. 14-17), который удаляет из клетки Na+, вошедший в нее во время возбуждения [28]. Они исчезают, если предотвратить активность насоса веществами, блокирующими метаболизм, например ДНФ (ср. рис. 1.7).

«Стабилизирующее» влияние [Са2+]0 на потенциал покоя. Зависимость Na+-токов от тестирующего потенциала, которую иллюстрирует рис. 2.6, может изменяться при различных воздействиях. Блокада некоторых Na+-каналов тетродотоксином или аналогично действующими веществами, а также изменения плотности Na+-каналов в мембране влияют только на амплитуду, но не на зависимость от потенциала или временной ход Na+-токов. Характерные смещения зависимости мембранных токов от потенциала происходят при изменениях внеклеточной концентрации Са2+, [Са2+]0. На рис. 2.10 графики зависимости максимальной Na+-проницаемости, PNa, от тестирующих потенциалов (абсцисса) построены при разных значениях [Ca2 + ]0. Графики для PNa, построенные в логарифмическом масштабе, вначале имеют вид поднимающейся прямой, а затем выходят на уровень насыщения. Влияние [Са2+]0 заключается в параллельном смещении графиков зависимости PNa от потенциала вдоль оси абсцисс: при [Са2+]0 = 0 небольшие деполяризации вызывают значительные изменения PNa, тогда как при высоких [Са2+]0 такой же Na+-ток может возникнуть только при деполяризации не менее чем на 35 мВ. Следовательно, снижение [Са2 + ]0 способствует генерированию потенциалов действия во время деполяризации. Влияние [Ca2+]0 на PNa, показанное на рис. 2.10, осложняется еще одним эффектом, действующим в том же направлении,- влиянием на зависимость инактивации от потенциала.

Кривые зависимости INa max от исходного потенциала (рис. 2.8) при изменениях [Ca2 + ]0 смещаются вдоль оси абсцисс точно таким же образом, как и кривые на рис. 2.10. В результате снижение [Са2 + ]0 сопровождается не только более значительным увеличением PNa в ответ на такую же деполяризацию (рис. 2.10), но и абсолютным уменьшением максимально возможного прироста INa (рис. 2.8). Общий эффект, однако, состоит в том, что уменьшение [Са2+]0 ведет к снижению порога генерации потенциала действия, т.е. повышает возбудимость, тогда как увеличение [Са2 + ]0 «стабилизирует» мембранный потенциал. Заметные локальные сдвиги [Ca2 + ]0 не так уж необычны в организме; например, в ЦНС при усилении активности (особенно в синапсах; см. с. 62) поступление Са2 + в клетки ведет к снижению [Ca2 + ]0 в ограниченных межклеточных пространствах (рис. 2.3); возбудимость клеток повышается, что может сопровождаться генерированием разрядов судорожного типа [13]. Общее снижение [Са2 + ]0 в плазме крови вызывает синдром тетании, при котором нерегулируемое возбуждение мышц приводит к судорогам.

Удивительное параллельное смещение графиков потенциалзависимости Na+-токов (и других мембранных токов) при повышении [Са2 + ]0 интересно с физической точки зрения. Как показывает представленная на рис. 2.15 модель Na+-канала, наружная сторона мембраны несет фиксированные заряды, главным образом отрицательные. Они принадлежат фосфо- и гликолипидам, а также гликопротеинам (рис. 1.2). Эти заряды удерживают около мембраны ионную оболочку, которая, по приблизительной оценке, обеспечивает примерно половину общего градиента мембранного потенциала, так что канальные белки «чувствуют» не более половины разности потенциалов, существующей между внутренней средой и наружной поверхностью клетки [3, 26]. Ионы Ca2+ взаимодействуют с фиксированными зарядами на поверхности плазматической мембраны, нейтрализуя их. Поэтому при высокой [Са2 + ]0 общий наружный отрицательный заряд снижается, а отрицательный потенциал, действующий на ионные каналы, увеличивается. По этой причине для получения при 20 мМ [Са2 + ]0 такого же повышения PNa, что и при 2 мМ [Ca2 ]0, потребуется примерно на 20 мВ более значительная деполяризация. И наоборот, при снижении [Са2+]0 отрицательный поверхностный заряд возрастает и графики потенциалзависимости смещаются в сторону меньших значений деполяризации.

Эффекты поверхностных отрицательных зарядов рассматривались здесь не только для того, чтобы объяснить влияние изменений [Са2 + ]0. Смещения потенциалзависимости, аналогичные представленным на рис. 2.10, наблюдаются и при сдвигах внеклеточного pH. При снижении pH возрастает [Н+]о, что уменьшает отрицательный заряд поверхности мембраны-эффект, аналогичный результату повышения [Са2+]0. Снижение pH до 4,5, так же как повышение [Са2 + ]0 на рис. 2.10, может вызвать смещение активации PNa на 25 мВ. Изменения pH тканей в зависимости от метаболизма вполне возможны. Состояние поверхностного заряда мембраны может также влиять на связывание и активность ионизированных веществ, действие которых аналогичным образом зависит от [Са2+]0 и от pH [3, 26, 33].

^ ГЛАВА 2. ПЕРЕДАЧА ИНФОРМАЦИИ ПОСРЕДСТВОМ ВОЗБУЖДЕНИЯ 35





Рис. 2.10. Зависимость максимальной Na+ -проницаемости, PNa, от величины скачков деполяризации. Перехват Ранвье был деполяризован от исходного мембранного потенциала —80 мВ до тестирующих потенциалов, отложенных по оси абсцисс. На вставке: деполяризация до тестирующего потенциала и возникающий в ответ Na+-ток, lNa. Максимум INa определяет (вместе с внутри- и внеклеточной концентрациями Na+ и мембранным потенциалом) максимальную PNa в соответствии с уравнением 7 (гл. 1). Кривые зависимости PNa от потенциала смещаются вдоль оси абсцисс при изменениях внеклеточной концентрации Са2+ ([Са2+]0 от 0 до 20 мМ). При снижении [Са2+]0| пороговая деполяризация для повышения PNa уменьшается; происходит повышение возбудимости перехвата Ранвье (по [3] с изменениями)
1   2   3   4   5   6   7   8   9   ...   36

Ваша оценка этого документа будет первой.
Ваша оценка:

Похожие:

Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconОбщеобразовательная программа дошкольного образования Авторский коллектив
Н., канд пед наук, Дякина А. А., доктор филол наук, Евтушенко И. Н., канд пед наук, Каменская В....
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconИ иммунотерапия инфекционных заболеваний
Авторы: канд мед наук, доц. Т. А. Канашкова; канд мед наук, доц. Ж. Г. Шабан; канд мед наук, доц....
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconБвк 56. 8 А 92
Ц, канд мед наук Н. С. Дмитриев, проф С. Н. Лапченко, проф. В. Т. Пальчун, проф. О. К. Патякина,...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconФлюороз зубов
Авторы: асс. Н. П. Руденкова; канд мед наук О. А. Козел; канд мед наук Н. И. Дмитриева; канд мед...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconКафедра стоматологии детского возраста
Авторы: д-р мед наук, профессор Т. Н. Терехова, канд мед наук, доцент А. Н. Кушнер, канд мед наук,...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconУчебно- методическое пособие утверждено на цикловой методической комиссии стоматологического факультета
В. Ф. Михальченко, доктор мед наук, доцент Э. С. Темкин, канд мед наук, ассистент Н. М. Морозова,...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconМетодические рекомендации Минск 2003 Удк 613. 6(075. 8)
А в т о р ы: канд мед наук, доц. В. И. Дорошевич; полк мед служ. Ю. Ю. Варашкевич; канд мед наук...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconМ. А. Тучинская*, канд мед наук; Салех С. Х. Нажар*; О. И. Шушляпин*, канд мед наук; Л. Л. Мищенко*;
Патофизиологическая природа и патогенетическая коррекция реперфузионного синдрома c реперфузионным...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconМэгид С. Михаил Перевод с английского под редакцией академика pamh а. А. Бунятяна, Издательство бином

Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconМетодические рекомендации Минск 2004 удк
Р е ц е н з е н ты, доцент кафедры микробиологии, вирусологии и иммунологии, : канд мед наук Н. Ф....
Разместите кнопку на своём сайте:
Медицина


База данных защищена авторским правом ©MedZnate 2000-2019
обратиться к администрации | правообладателям | пользователям
Документы