Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon

Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом





Скачать 1.12 Mb.
Название Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом
страница 3/17
Дата 30.01.2013
Размер 1.12 Mb.
Тип Документы
1   2   3   4   5   6   7   8   9   ...   17
^

6. Второе начало термодинамики. Энтропия


Максимальная работа Wмакс, которая может быть по–лучена при данной убыли внутренней энергии ΔЕ в про–цессе перехода из состояния 1 в состояние 2, дости–гается лишь в том случае, если этот процесс обратимый. В соответствии с выражением для первого начала тер–модинамики при этом выделяется минимальная теплота Qмин

Qмин = ΔЕ – Wмакс .

Максимально достижимый коэффициент полезного действия, характеризующий эффективность затрат внут–ренней энергии системы, соответственно равен

ηмакс= Wмакс / ΔЕ.

При необратимом процессе перехода из состояния 1 в состояние 2 производимая системой работа мень–ше W.

Чтобы рассчитать максимальный коэффициент hмакс при известном значении ΔЕ, необходимо знать вели–чину Wмакс или Qмин

Wмакс = ΔЕ – Qмин , следовательно, ηмакс = 1 – ΔЕ / Qмин .

Величину Qмин  можно рассчитать на основе второго начала термодинамики с помощью термодинамиче–ской функции состояния, называемой энтропией.

Понятие энтропии ввел (1865 г.) немецкий физик Р. Ю. Клаузиус (1822—1888) – один из основателей термодинамики и молекулярно-кинетической теории тепловых процессов. Термодинамическое определе–ние энтропии в соответствии с Клаузиусом: энтропия представляет собой функцию состояния, прира–щение которой ΔS равно теплоте Qмин подведен–ной к системе в обратимом изотермическом процессе, деленной на абсолютную температуру Т, при которой осуществляется процесс:

ΔS = Qмин / Т.

Из формулы следует, что единица измерения эн–тропии Дж/К.

Примером обратимого изотермического процесса мо–жет служить медленное таяние льда в термосе с водой при 273°К. Экспериментально установлено, что для плав–ления 1 моля льда (18 г) необходимо подвести, по край–ней мере, 6000 Дж теплоты. При этом энтропия систе–мы «лед – вода» в термосе возрастает на ΔS = 6000 Дж: 273°К = 22 Дж/К.

При охлаждении термоса с водой при 273°К можно медленно отвести –6000 Дж теплоты, и при кристал–лизации воды образуется 1 моль льда. Для этого про–цесса величина Qмин в формуле имеет отрицательное значение. Соответственно, энтропия системы «лед – вода» при образовании 1 моля льда убывает на ΔS =-22 Дж/К.

Аналогичным образом можно рассчитать изменение энтропии при любых изотермических физических и хи–мических процессах, если известна теплота под–водимая к системе или отводимая от нее при этих про–цессах. Как известно из физики, эта теплота может быть определена с помощью калориметрических из–мерений.

Таким образом, изменение энтропии, так же как и двух других функций состояния системы – внутренней энер–гии и энтальпии, представляет собой экспериментально определяемую величину. Физический смысл энтропии, как и внутренней энергии, отчетливо выявляется при рас–смотрении с молекулярно-кинетической точки зрения процессов, протекающих в изолированных системах.
^

7. Формула Больцмана


Изолированные системы по определению не обме–ниваются с внешней средой ни веществом, ни энер–гией. Конечно, реально таких систем в природе не су–ществует. Однако очень хорошая изоляция может быть осуществлена, если поместить систему в термос, за–крытый пробкой.

Оказывается, что любой самопроизвольный процесс может протекать в изолированной системе лишь в том случае, когда он характеризуется увеличением энтро–пии; в равновесии энтропия системы постоянна:

ΔS ≥ 0.

Это утверждение, основанное на эксперименталь–ных наблюдениях, является одной из возможных фор–мулировок второго начала термодинамики.

Процесс, обратный самопроизвольному, согласно второму началу термодинамики в изолированной систе–ме протекать не может, так как такой процесс характе–ризуется уменьшением энтропии.

Рассмотрение различных изолированных систем по–казывает, что самопроизвольные процессы всегда связаны с ростом числа микросостояний w системы. В этих же процессах происходит возрастание энтропии S системы, т. е. энтропия возрастает с увеличением числа микросостояний. Впервые на существование та–кой зависимости обратил внимание австрийский фи–зик Л. Больцман, который в 1872 г. предложил соотно–шение:

КБ = R / NA = 1,38 – 10-23 Дж/К,

где КБ – постоянная Больцмана, равная отношению газовой постоянной R к постоянной Авогадро NA .

Это соотношение называется формулой Больц-мана.

Формула Больцмана позволяет теоретически рас–считать энтропию системы по числу возможных ее микросостояний. Такие расчеты хорошо согласуются с экспериментально определенными значениями. В частности, известно, что число микросостояний кристаллических веществ при 0°К близко к w0 « 1. Та–ким образом, могут быть определены абсолютные зна–чения энтропии кристаллизующихся веществ в отличие от внутренней энергии Е и энтальпии Н, для которых можно определить лишь относительные значения.

Увеличение числа микросостояний системы во мно–гих случаях можно связать с ростом неупорядоченно–сти в этой системе, с переходом к более вероятным распределениям энергии системы. Исходя из соотно–шения Больцмана, можно дать молекулярно-кинетиче-ское определение энтропии.

Энтропия есть мера вероятности пребывания системы в данном состоянии или мера неупоря–доченности системы.

Важное значение понятия энтропии связано с тем, что на основе этой величины можно прогнозировать направление самопроизвольного протекания процес–сов. Однако применимость измерения энтропии как критерия направленности процессов ограничивается изолированными системами в соответствии с форму–лировкой второго начала термодинамики.
^

8. Энергия Гиббса


В качестве критерия самопроизвольности процес–сов в открытых и закрытых системах вводится новая функция состояния – энергия Гиббса. Эта функция получила название в честь великого американского физика Д. У. Гиббса (1839—1903), который вывел эту функцию, а затем использовал в термодинамических работах.

Энергия Гиббса определяется через энтальпию Н и энтропию S с помощью соотношений:

G = H – S,

ΔG = ΔH – ΔS.

На основе энергии Гиббса второе начало термодина–мики можно сформулировать следующим образом: в изобарно-изотермических условиях (р, Т = const) в системе самопроизвольно могут осуществляться только такие процессы, в результате которых энер–гия Гиббса системы уменьшается (ΔG <0).В со–стоянии равновесия энергия Гиббса системы не ме–няется (G = const, AG = 0).

ΔG < 0, р, Т = const.

Из изложенного вытекает, что энергия Гиббса игра–ет большую роль в изучении биоэнергетических про–цессов. С помощью этой функции состояния можно прогнозировать направление самопроизвольных про–цессов в биологических системах и рассчитывать мак-сималь-но достижимый КПД.

Энергия Гиббса G так же, как и энтальпия Н, являет–ся функцией состояния системы. Поэтому изменение энергии Гиббса ΔG может использоваться для харак–теристики химических превращений аналогично изме–нению энтальпии ΔН. Уравнения реакции, для которых указывается соответствующее этим реакциям изменение энергии Гиббса, также называются термо–химическими.

Химические реакции, при протекании которых про–исходит уменьшение энергии Гиббса системы (ΔG < 0) и совершается работа, называются экзергоническими. Реакции, в результате которых энергия Гиббса возрас–тает (ΔG > 0) и над системой совершается работа, называются эндергоническими.

Выведенная на основе второго начала термодина–мики энергия Гиббса является функцией состояния. Следовательно, так же, как и для энтальпии, может быть сформулирован закон Гесса для энергии Гиббса в следующей форме: изменение энергии Гиббса при образовании заданных продуктов из данных реа–гентов при постоянных давлении и температуре не зависит от числа и вида реакций, в результате ко–торых образуются эти продукты.

Важный пример применения закона Гесса – расчет энергии Гиббса реакции окисления глюкозы дикисло-родом. Изменение энергии Гиббса в этой реакции при р = 101 кПа и Т = 298°К, определенное вне организма, равно ΔG° = –2880 кДж/моль. Соответствующее тер–мохимическое уравнение записывается в виде:

С6Н12О6 + 6О2 = 6СО2 + 6Н2О, ΔGp-я° = –2880 кДж/моль.

В клетках организма эта реакция осуществляется через целый ряд последовательных стадий, изучен–ных биохимиками. Можно предсказать исходя из за–кона Гесса, что сумма изменений энергии Гиббса во всех промежуточных реакциях равна ΔGp-я:

ΔG1 + ΔG2 + ΔG3 + … + ΔGn = ΔGp-я °.

Энергия Гиббса реакции равна алгебраической сумме энергий Гиббса образования стехиометри-ческого количества продуктов за вычетом алге–браической суммы энергий Гиббса образования стехиометрического количества реагентов:

ΔGp-я = (ncΔGc + nDΔGD)-(nAΔGA + nBΔGB).
1   2   3   4   5   6   7   8   9   ...   17

отлично
  1
Ваша оценка:

Похожие:

Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Программа аттестационного собеседования для поступающих в иатэ на сокращенную программу на базе спо
Программа составлена в соответствии с Государственным образовательным стандартом высшего профессионального...
Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Программа вступительных испытаний в магистратуру по направлению (специальности) подготовки 030300
Программа составлена в соответствии с Государственным образовательным стандартом высшего профессионального...
Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Программа разработана в соответствии с: Оригинальным образовательным стандартом ниу вшэ по направлению

Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Рабочая программа по гигиене с основами экологии человека для специальности 040400 Стоматология Факультет:
«Гигиена с основами экологии человека. Вг.» для специальности 040400 Стоматология, подготовленной...
Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Типовая учебная программа разработана в соответствии со следующими нормативными документами: образовательным
А. Ч. Буцель, заведующая кафедрой болезней уха, горла, носа Учреждения образования «Белорусский государственный...
Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Рабочая программа по детским болезням для студентов педиатрического факультета Кафедра детских болезней
Государственным образовательным стандартом (2000г.) высшего профессионального образования в медицинском...
Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Курс лекций по дисциплине «неорганическая химия» (для студентов инженерно технологического факультета)

Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Методические указания к выполнению лабораторных работ и решению задач по дисциплине «Общая и неорганическая

Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Яполучил (а) ответы на все мои вопросы и доверяю квалификации врача
Доктор тщательно обследовал мои зубы и полость рта. Мне объяснили все существующие методы лечения...
Аннотация Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом icon Синтез, термодинамические и кинетические закономерности образования и разложения унитиолатных комплексов

Разместите кнопку на своём сайте:
Медицина


База данных защищена авторским правом ©MedZnate 2000-2016
allo, dekanat, ansya, kenam
обратиться к администрации | правообладателям | пользователям
Документы