|
Скачать 0.96 Mb.
|
^
Необходимо идентифицировать клетки, несущие ген-мишень. После трансплантации генов лишь небольшая часть клеток содержит необходимый ген. Отбор клеток проводят в две стадии. Первая стадия – поиск клеток, несущих вектор, например, по приобретенной способности быть устойчивыми к антибиотикам. Вторая стадия – поиск клеток, несущих и вектор, и ген-мишень. Для этого используют две группы методов: а) методы, основанные на непосредственном анализе ДНК клеток-реципиентов: – определение нуклеотидной последовательности ДНК, когда из клеток, предположительно содержащих искомый ген, выделяют ДНК вектора, затем проводят секвенирование; – гибридизация выделенной ДНК с зондом, который может быть интересующим геном или соответствующей ему м-РНК; б) методы, основанные на определении признака, кодируемого геном: – непосредственный отбор клеток, синтезирующих белок – продукт транскрипции и трансляции гена-мишени; – использование селективных сред, поддерживающих рост только тех клеток, которые получили ген-мишень, например, клетки, несущие ген β-галактозидазы культивируют на среде с лактозой; – иммунологическая детекция, например, при поиске в бактериях α-интерферона человека его связывают с антителами, то есть ген идентифицируют с помощью специфических антител к его белковому продукту. ^ Эффективность функционирования бактериальных генов не одинакова. Бактериальные гены, включенные в геном, экспрессируются достаточно легко, так как в процессах транскрипции и трансляции всех прокариот много общего. Экспрессия генов эукариот у бактерий происходит крайне редко, так как регуляторные участки эукариот не узнаются бактериальными ДНК – полимеразами, поэтому разработаны следующие методы защиты: а) использование ингибиторов протеаз, например, выход человеческого интерферона увеличивается примерно в четыре раза при введении гена, отвечающего за синтез ингибиторов протеаз; б) встраивание гена в подходящий вектор экспрессии, который уже содержит регуляторные элементы; в) амплификация (увеличение числа копий). Суммарная активность экспрессируемого гена увеличивается с ростом числа копий рекомбинантной ДНК в расчете на клетку. Используя многокопийные плазмиды, можно получить сверхсинтез нужных белковых продуктов. Получены температурно-чувствительные мутантные плазмиды, способные накопить до 1…2 тыс. копий на клетку без нарушения жизненно важных функций бактерий (обычно в клетке от 20 до 50 копий). В настоящее время разработаны системы клонирования в бактериях, дрожжах, грибах, растениях и млекопитающих. ^ Векторы для клонирования в таких системах представляют собой двойные репликоны, способные существовать и в клетке E.coli, и в той клетке хозяина, для которой они предназначены. С этой целью создают гибридные векторы, содержащие репликон какой-либо из плазмид E.coli и требуемый репликон (из бактерий, дрожжей). Bacillus subtilis – непатогенный почвенный микроорганизм; используется для производства белков и ферментов. В этих бактериях обнаружены плазмиды и фаги, генетика которых хорошо изучена. Клонирование осуществляется с помощью так называемых челночных векторов, которые способны реплицироваться в клетках нескольких хозяев: Bacillus subtilis, E.coli, Staphylococcus aureus. Векторы были получены комбинацией in vitro фрагментов плазмид Staphylococcus aureus, E.coli и хромосомных фрагментв Bacillus subtilis. Полученные рекомбинантные штаммы несут признаки устойчивости к антибиотикам. Стрептомицеты широко применяются в биотехнологии. С помощью клонирования получены штаммы, устойчивые к антибиотикам. ^ Среди дрожжей наиболее изучены S.serevisiae. Дрожжевая плазмида Scp1 содержит около 6300 пар оснований и имеет от 50 до 100 копий на клетку. Ее гибриды с плазмидами обычно используют в качестве векторов. Работа с дрожжами облегчается тем, что они могут расти в жидкой среде и давать колонии на твердой среде, имеют короткое время регенерации. Процедура внедрения ДНК в клетки дрожжей достаточно проста. Целлюлозную стенку удаляют обработкой ферментами, получая сферопласты. Их инкубируют с ДНК в присутствии хлорида кальция и полиэтиленгликоля. Мембрана при этом становится проницаемой для ДНК. Дальнейшая инкубация сферопластов на твердой среде восстанавливает клеточную стенку. Последующая селекция заключается в выращивании клонов на среде, в которой отсутствует тот или иной компонент. При этом трансформаты легко отбираются. Применяя приемы, аналогичные использовавшимся при клонировании бактерий, удается достичь синтеза чужеродных белков в клетках дрожжей, например, интерферона человека. ^ В целях исследования функционирования генов высших эукариот занимаются проблемой введения генов в клетки млекопитающих. Предварительно клонированные гены вводят в клетку животных различными путями. Например, метод маркера. Метод служит для идентификации и последующего размножения клеток, содержащих интегрированную ДНК. Пример: предварительно получали рекомбинантную плазмиду E.coli с геном тимидинкиназы из вируса герпеса. Затем с помощью полученной плазмиды трансформировали животные клетки, дефектные по синтезу тимидинкиназы, после трансформации они приобретали способность к синтезу фермента на селективной среде. Также сконструировано большое количество челночных векторов, способных к репликации в животной и бактериальной клетках. Разработана технология микроинъекции ДНК непосредственно в ядро клетки. Трансформация соматических клеток млекопитающих дает возможность изучать механизмы регуляции экспрессии генов и целенаправленно модифицировать генетический аппарат клетки животных, в том числе человека. Культуры клеток млекопитающих могут быть эффективным источником выделения ряда вирусных антигенов с целью получения вакцин для человека и животных. В настоящее время разработаны способы введения генов в эмбриональные клетки млекопитающих, мух и некоторых растений с целью изменения свойств организмов, таких как скорость роста, устойчивость к заболеваниям и внешним воздействиям. Такие работы были начаты на крупных яйцах амфибий, теперь продолжены с яйцеклетками и эмбрионами мышей. Микроинъекцию клонированных генов проводят в один или оба пронуклеуса только что оплодотворенной яйцеклетки мыши. После инъекции яйцеклетку немедленно имплантируют в яйцевод приёмной матери или дают развиваться в культуре до стадии бластоцисты, после чего имплантируют в матку. Таким образом были инъецированы гены интерферона и инсулина человека, ген глобулина кролика, ген тимидинкиназного вируса герпеса. Выживает от 10 до 30 % яйцеклеток, доля трансгенных мышей составляет от нескольких до 40 %. До сих пор не удается встроить чужеродную ДНК в заданный участок хромосомы, вытеснить ген и заменить его другим. Исследования проводятся с целью лечения генетических заболеваний. ^ Генетическую инженерию предполагают использовать с целью изменения ряда свойств организма: повышения продуктивности, резистентности к заболеваниям, увеличения скорости роста, улучшения качества продукции и других. Животных, несущих в своем геноме рекомбинантный ген, принято называть трансгенными, а ген, интегрированный в геном реципиента – трансгеном. Продукт этого гена (белок) является трасгенным. Получение трансгенных животных предусматривает ряд этапов: приготовление раствора ДНК для микроинъекции, извлечение эмбрионов из донорных организмов, микроинъекция ДНК и пересадка инъецированных эмбрионов в яйцеводы или, после культивирования, в матку синхронизированных реципиентов. У родившегося потомства исследуют экспрессию трансгена на уровне транскрипции и трансляции. Для трансформирования генов используют следующие приемы: – микроинъекцию ДНК в пронуклеус зигот или в два пронуклеуса; – введение ДНК с помощью ретровирусных векторов; – получение трансгенных химер из генетически трансформированных клеток. Наиболее распространена микроинъекция. Ее осуществляют с помощью специальной пипетки (внутренний диаметр около 1 мкм), количество инъецируемого раствора ДНК около 1…2 пкл (10-9). После инъекции ДНК эмбрионы культивируют до момента пересадки реципиентам. Затем хирургическим путем эмбрионы переносят в яйцеводы. Каждому реципиенту мыши, кролика и свиньи обычно пересаживают от 20 до 30 инъецированных зигот, причем у свиней все эмбрионы транс плантируют в один яйцевод, у мышей и кроликов – раздельно по яйцеводам. Реципиенту овец, коз и крупного рогатого скота пересаживают по 2…4 эмбриона раздельно по яйцеводам. Генетический анализ родившихся трансгенных животных и полученного от них потомства показал, что, несмотря на инъекцию ДНК на ранних стадиях, в трансгенных линиях могут появляться так называемые мозаики. К мозаикам относят животных, происходящих из одной зиготы, но имеющих разные генотипы. Помимо клеточных линий, содержащих трансген, они имеют еще и нетрансгенные клеточные линии. Около 30 % первичных трансгенных животных – мозаики, что затрудняет создание чистых трансгенных линий животных. Часть мозаик вообще не может дать начало трансгенным линиям, так как у них отсутствует передача трансгена по наследству. Одной из задач сельскохозяйственной биотехнологии является создание животных-биореакторов – продуцентов биологически активных веществ. Интерес представляют гены, кодирующие белки каскада гормона роста: непосредственно гормон роста (ГР), релизинг-фактор гормона роста (РФ), инсулиноподобный фактор гормона роста (ИФГР). В конце 70-х годов ХХ века на основе технологии рекомбинантной ДНК получили гормон роста микробного происхождения. Было показано, что гормон роста ГР оказывает такое же стимулирующее действие на лактацию и рост животного, как и гипофизарный ГР. Микробный ГР вызывал увеличение удоев на 23…31 % при дозе 13 мг в день. Инъекции ГР молодняку крупного рогатого скота, свиней и овец увеличивали суточный привес на 20…30 % при сокращении расхода кормов, кроме того, у свиней уменьшалось содержание жира и увеличивалось содержание белка в тканях, что повышало качество мясопродуктов. Первые трансгенные мыши с геном ГР были получены в 1982 г. У них отмечалось повышение скорости роста и увеличение конечной живой массы. Однако, у трансгенных свиней с геном ГР (1989 г.) увеличение роста не наблюдалось. По данным Л.К. Эрнста (1996 г) у трансгенных свиней с геном релизинг-фактора ГР конечная живая масса была на 15,7 % выше по сравнению с контрольными животными. У трансгенных овец с генами ГР и РФ, несмотря на повышенный уровень ГР, скорость роста не повышалась. И у овец, и у свиней понижалось содержание жира. Расширяется возможность создания животных, у которых после синтеза лактозы она будет разлагаться β-галактозидазой, таким образом возможно получение безлактозного молока. Другая задача сельскохозяйственной биотехнологии – создание трансгенных животных, устойчивых к заболеваниям. Ведутся работы в этом направлении, показано, что защитные механизмы от инфекционных заболеваний обусловлены либо препятствием вторжению возбудителя, либо изменением рецепторов. В медицине трансгенные животные используются для получения биологически активных соединений, за счет включения в клетки организма генов, вызывающих у них синтез новых белков. Для молочной промышленности ведется целенаправленная трансгенная экспрессия в эпителиальные клетки молочной железы с целью выхода белков с молоком. Молочная железа – хороший продуцент чужеродных белков, которые можно получать из молока и использовать в фармацевтической промышленности. Из молока трансгенных животных извлекают следующие рекомбинантные белки: человеческий белок С, антигемофильный фактор IX, α-1-антитрипсин, тканевой плазменный антиватор, лактоферрин, сывороточный альбумин, урокиназу и химозин. Исследования проводятся на мышах. Создание клеточных культур и их выращивание в промышленных реакторах, а также выведение трансгенных животных и их обслуживание – дорогие и сложные процедуры. Однако, трансгенные животные легко размножаются, содержание их сравнительно дешево, что делает их хорошими продуцентами разнообразных белков с низкой стоимостью. В России группой ученых под руководством Л.К. Эрнста получены трансгенные овцы с геном химозина (фермент для получения сыра). В 1 л молока содержится от 200 до 300 мг химозина (3 л молока достаточно для производства 1 т сыра из коровьего молока). Стоимость трансгенного химозина будет в несколько раз ниже, чем традиционного, получаемого из сычугов молочных телят и ягнят. |