Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка icon

Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка





НазваниеПеревод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка
страница31/36
Н. Н. Алипова
Дата25.03.2013
Размер8.58 Mb.
ТипЛитература
1   ...   28   29   30   31   32   33   34   35   36
^

Глава 12. ФИЗИОЛОГИЯ ЧУВСТВА РАВНОВЕСИЯ, СЛУХА И РЕЧИ. Р. Клинке


Данная глава посвящена физиологии двух филогенетически родственных сенсорных органов - слуха и равновесия. Они не только тесно связаны анатомически, располагаясь рядом в каменистой кости и образуя внутреннее ухо, но и произошли в ходе эволюции из одной структуры. Поскольку важнейшее для человека средство общения речь опосредовано органом слуха, физиология речи также рассмотрена в данной главе.

Речь требует наличия слуха. Кроме того, словесное общение- важнейшее средство обучения, поэтому глухота или даже лишь недостаток слуха представляют собой наиболее серьезную угрозу для умственного развития ребенка. Сравнительно-физиологические исследования показали, что глухота сказывается на нем сильнее, чем слепота. Следовательно, слух - важнейшее для человека чувство.
^

12.1. Физиология чувства равновесия

Физиология периферического сенсорного аппарата

Вводные анатомические комментарии. Вестибулярный орган -одна из составных частей перепончатого лабиринта, образующего внутреннее ухо; другая его составляющая-орган слуха (рис. 12.1). Перепончатый лабиринт заполнен жидкостью, эндолимфой, и погружен в другую, называемую перилимфой (их состав приведен на с. 285). Вестибулярный орган состоит из двух морфологических субъединиц отолитового аппарата (macula utriculi и macula sacculi) и полукружных каналов {передний и задний вертикальные и горизонтальный каналы). В области макул (пятен) и в полукружных каналах вблизи от ампул расположен содержащий рецепторы сенсорный эпителий, который покрыт желеобразной массой, образованной в основном мукополисахаридами. В отолитовом аппарате эта масса как бы подушкой покрывает сенсорные клетки и содержит отложения карбоната кальция в форме крошечных кристаллов кальцита (отолитов). Благодаря наличию этих «каменистых» включений она носит название отолитовой1) мембраны. В полукружных каналах желеобразная масса больше напоминает

1) Буквальный перевод греческого термина "otolithus"- «ушной камень».- Прим. ред.

мембранную перегородку. Эта структура, купула, кристаллов не содержит.

^ Рецепторы и адекватный стимул. В сенсорном эпителии макул и полукружных каналов находятся два морфологически различных типа рецепторных клеток [8], которые, очевидно, существенно не различаются своими физиологическими свойствами.

Оба типа клеток несут на свободной поверхности субмикроскопические волоски (реснички), поэтому называются волосковыми (рис. 12.2). С помощью электронного микроскопа можно различить стереоцилии (по 60-80 на каждой рецепторной клетке) и киноцилии (по одной). Рецепторы - это вторичные сенсорные клетки, т.е. они не несут собственных нервных отростков, а иннервируются афферентными волокнами нейронов вестибулярного ганглия, образующими вестибулярный нерв. На рецепторных клетках оканчиваются также эфферентные волокна. Афференты передают в ЦНС информацию об уровне возбуждения рецепторов, а эфференты изменяют чувствительность последних, однако значение этого влияния до сих пор не совсем ясно [37].

Регистрация активности одиночных афферентных волокон вестибулярного нерва показала их





Рис. 12.1. Схема вестибулярного лабиринта. Его лимфатические пространства сообщаются с улитковыми

^ 278 ЧАСТЬ III. ОБЩАЯ И СПЕЦИАЛЬНАЯ СЕНСОРНАЯ ФИЗИОЛОГИЯ



Рис. 12.2. Схема двух рецепторных клеток сенсорного эпителия вестибулярного органа и их нервных волокон. При наклоне пучка ресничек в сторону киноцилии частота импульсации в афферентном нервном волокне повышается, а при наклоне в противоположную сторону снижается

относительно высокую регулярную активность покоя, т.е. импульсацию и в отсутствие внешних стимулов. Если желеобразную массу экспериментально сдвигать относительно сенсорного эпителия, такая активность увеличивается или уменьшается в зависимости от направления смещения. Эти изменения происходят следующим образом. Поскольку реснички погружены в желеобразную массу, при движении последней они отклоняются. Сдвиг их пучка и служит адекватным стимулом для рецептора. Когда он направлен в сторону киноцилии (рис. 12.2), активируется соответствующее афферентное волокно: скорость его импульсации возрастает. При сдвиге в противоположном направлении частота импульсов снижается [8]. Сдвиг в направлении, перпендикулярном данной оси, активности не изменяет. Информация передается из рецепторной клетки в окончание афферентного нерва за счет рецепторного потенциала и неидентифицированного пока нейромедиатора [38]. Наиболее существенно здесь то, что сдвиг (изгибание) ресничек-это адекватный стимул для вестибулярных рецепторов, увеличивающий или уменьшающий (в зависимости от своего направления) активность афферентного нерва. Таким образом, наблюдается морфологическая (по расположению ресничек) и функциональная (по ха-

рактеру воздействия на активность) ориентация рецепторной клетки.

^ Естественные стимулы для макул. Как уже говорилось, реснички рецепторных клеток погружены в отолитовую мембрану. У последней за счет присутствия кристаллов кальцита плотность (приблизительно 2,2) существенно выше, чем у эндолимфы (около 1), заполняющей остальную внутреннюю полость саккулуса (сферического мешочка) и утрикулуса (эллиптического мешочка, маточки). Значит, вследствие повсеместно присутствующего гравитационного ускорения всякий раз, когда сенсорный эпителий отолитового аппарата не занимает совершенно горизонтального положения, сила тяжести вызывает скольжение (на очень малое расстояние) по нему всей отолитовой мембраны. (Представьте себе, что произойдет, если желеобразная масса, обозначенная на рис. 12.2 красным, очень тяжела, а вы, держа учебник вертикально, наклоняете его вбок. Естественно, она будет соскальзывать под углом вниз.) Это перемещение изгибает реснички, т.е. на рецепторы действует адекватный стимул [8]. Когда человек стоит вертикально, а его голова находится в «нормальном» положении, макула утрикулуса расположена почти горизонтально и отолитовая мембрана не прикладывает сдвигового усилия к покрытому ею сенсорному эпителию. При наклоне головы макула утрикулуса оказывается под углом к горизонту, ее реснички изгибаются и рецепторы стимулируются. В зависимости от направления наклона частота импульсации эфферентного нерва либо увеличивается, либо снижается. Ситуация с макулой саккулуса в принципе аналогична, но она при нормальном положении головы расположена почти вертикально (рис. 12.1). Таким образом, при любой ориентации черепа каждая из отолитовых мембран по-своему воздействует на сенсорный эпителий и возникает специфическая картина возбуждения нервных волокон. Поскольку в каждой макуле две популяции рецепторных клеток с противоположно ориентированными ресничками, нельзя сказать, что наклон головы в данном направлении активирует афференты [8, 26]. Напротив, в любом случае одни волокна активируются, а другие тормозятся. Такого положения головы, при котором активность всех нервных волокон упала бы до нуля, не существует.

Центральные компоненты вестибулярной системы, оценивая тип возбуждения вестибулярного нерва, информируют организм об ориентации черепа в пространстве [3, 21, 26]. Обеспечение таких сведений—важнейшая функция отолитовых органов. Гравитационное ускорение - лишь одна особая форма линейных ускорений; естественно, макулы реагируют и на другие. Однако ускорение силы тяжести насколько велико, что в его присутствии прочие

^ ГЛАВА 12. ФИЗИОЛОГИЯ ЧУВСТВА РАВНОВЕСИЯ, СЛУХА И РЕЧИ 279



Рис. 12.3. Схема левого горизонтального полукружного канала (вид сверху). За исключением вздутия, обозначающего утрикулус, прочие части лабиринта не показаны. Угловое ускорение в направлении, указанном черной стрелкой (представьте себе, что вы вращаете учебник в эту сторону), отклоняет купулу по ходу красной стрелки

линейные ускорения, встречающиеся в повседневной жизни (например, при разгоне автомобиля), играют для вестибулярной системы подчиненную роль и даже могут неправильно интерпретироваться ЦНС (см. с. 280).

^ Естественные стимулы для полукружных каналов. Второй вид адекватных стимулов для ресничек вестибулярных рецепторов воспринимается в полукружных каналах (рис. 12.3). Хотя реальная форма последних в организме - не идеальная окружность (рис. 12.1), они действуют как замкнутые круговые трубки, заполненные эндолимфой. В области ампулы их наружная стенка выстлана сенсорным эпителием (рис. 12.3); здесь купула с глубоко утопленными в ней ресничками рецепторных клеток выступает в эндолимфу. Не содержащая минеральных включений купула полукружных каналов обладает точно такой же плотностью, что и эндолимфа. Следовательно, линейное ускорение (включая гравитационное) на этот орган не влияет; при прямолинейном движении и различных ориентациях головы взаиморасположение полукружных каналов, купулы и ресничек остается неизменным. Иной эффект у углового (вращательного) ускорения. При повороте головы полукружные каналы, естественно, поворачиваются вместе с ней, однако эндолимфа в силу своей инерции в первый момент остается на месте. Возникает разность давлений по обе стороны купулы, соединенной со стенкой канала и образующей водонепроницаемую преграду [26], в результате чего она отклоняется в сторону, противоположную движе-

нию (рис. 12.3). Это вызывает сдвиговое усилие, приложенное к ресничкам, и, таким образом, изменяет активность афферентного нерва. В горизонтальных каналах все рецепторы ориентированы так, что киноцилии обращены к утрикулусу, поэтому активность афферентов увеличивается, когда купула отклоняется в ту же сторону (утрикулопетально). В левом горизонтальном полукружном канале это происходит при вращении влево. В вертикальных каналах афференты активируются при утрикулофугальном отклонении купулы (от утрикулуса). Импульсация всех этих волокон, приходящих из трех каналов с каждой стороны, также оценивается ЦНС и дает информацию об угловых ускорениях, действующих на голову. Именно потому, что голова может вращаться вокруг трех пространственных осей - наклоняться вперед и назад, влево и вправо и поворачиваться вокруг длинной оси тела, необходимы именно три полукружных канала, лежащие в трех почти перпендикулярных друг другу плоскостях. При вращении вокруг какой-либо диагональной оси стимулируется более одного канала. Мозг при этом выполняет векторный анализ информации, определяя истинную ось вращения. В клинических исследованиях (см. с. 281) важно учитывать, что так называемый горизонтальный полукружный канал расположен не совсем горизонтально: его передний край приподнят приблизительно на 30".

^ Особенности купулярной механики. Рассмотрим сначала, что происходит с купулой при кратковременном угловом ускорении, т.е. когда мы просто вращаем головой. Как следует из рис. 12.4, А, отклонение купулы соответствует не этому ускорению, а моментальной угловой скорости. Соответственно изменения частоты нейронной импульсации по сравнению со спонтанной приближаются к изменениям угловой скорости, а не углового ускорения, хотя силы, вызывающие деформацию купулы, обусловлены именно ускорением. После завершения этого короткого движения купула возвращается в исходное состояние, и активность афферентного нерва снижается до уровня покоя. На рис. 12.4, Б показана принципиально иная ситуация, наблюдающаяся при длительном вращении (например, на центрифуге), когда после первоначального ускорения надолго устанавливается постоянная угловая скорость. Купула, отклонившись в первый момент, затем медленно возвращается в положение покоя. Быстрая остановка равномерного вращения снова отклоняет ее, но уже в противоположном направлении (из-за инерции эндолимфа продолжает двигаться, в результате чего возникает разность давлений по обе стороны купулы, приводящая к ее смещению, характеристики которого, за исключением направленности, те же, что и в начале движения). Для возвращения купулы в исходное положение требуется сравнительно длительное время (10-30 с).

^ 280 ЧАСТЬ III. ОБЩАЯ И СПЕЦИАЛЬНАЯ СЕНСОРНАЯ ФИЗИОЛОГИЯ



Рис. 12.4. Отклонение купулы и активность афферентного нервного волокна: .4-при коротком повороте (например, головы); Б -при длительном вращении (например, на стуле). Отметьте различие временного масштаба на рисунках

Разница между реакциями купулы на короткую и длительную стимуляцию связана с механическими свойствами системы «купула-эндолимфа», которая ведет себя в первом приближении подобно сильно демпфированному крутильному маятнику [26]. При этом следует помнить, что силы, отклоняющие купулу, всегда обусловлены ускорением, хотя при кратковременных угловых ускорениях, наиболее обычных в физиологических условиях, ее отклонение пропорционально не им, а угловой скорости.

Деформации купулы, как правило, очень малы [41], но ее рецепторы крайне чувствительны. В экспериментах на животных очень быстрый поворот тела всего лишь на 0,005° (отклонение купулы-такого же порядка) оказался для них надпороговым стимулом [32].
^
Центральная вестибулярная система

Первичные афференты вестибулярного нерва оканчиваются главным образом в области вестибулярных ядер продолговатого мозга. С каждой стороны тела их по четыре, отличающихся друг от

друга как анатомически, так и функционально: верхнее (Бехтерева), медиальное (Швальбе), латеральное (Дейтерса) и нижнее (Роллера). Приходящие в них импульсы от вестибулярных рецепторов сами по себе не обеспечивают точной информации о положении тела в пространстве, поскольку угол поворота головы из-за подвижности шейных суставов не зависит от ориентации туловища. ЦНС должна учитывать и положение головы относительно туловища. Следовательно, вестибулярные ядра получают дополнительную афферентацию от шейных рецепторов (мышц и суставов) [3,21]. При экспериментальной блокаде этих связей возникают такие же нарушения равновесия, как и при повреждении лабиринта (см. с. 282). В вестибулярные ядра поступают и соматосенсорные сигналы от других суставов (ног, рук).

Нервные волокна, выходящие из этих ядер, связаны с другими отделами ЦНС, что обеспечивает рефлексы поддержания равновесия. К таким путям относятся следующие [3, 21].

а. ^ Вестибулоспинальный тракт, волокна которого в конечном итоге влияют главным образом на γ-мотонейроны мышц-разгибателей, хотя оканчиваются и на а-мотонейронах.

б. Связи с мотонейронами шейного отдела спннного мозга, в принципе относящиеся к вестибулоспинальному тракту.

в. Связи с глазодвигательными ядрами (см. с. 248), которые опосредуют движения глаз, вызываемые вестибулярной активностью. Эти волокна проходят в составе медиального продольного пучка.

г. Тракты, направляющиеся в вестибулярные ядра противоположной стороны мозга, дающие возможность совместно обрабатывать афферентацию с обеих сторон тела.

д. Связи с мозжечком, особенно с архицеребеллумом (см. ниже).

е. Связи с ретикулярной формацией, обеспечивающие воздействие на ретикулоспинальный тракт-еще один (полисинаптический) путь к а- и γ-мотонейронам.

ж. Тракты, проходящие через таламус в постцентральную извилину коры головного мозга, позволяющие обрабатывать вестибулярную информацию, а значит, ориентироваться в пространстве сознательно.

з. Волокна, направляющиеся в гипоталамус, участвующие в основном в возникновении кинетозов (укачивания; см. с. 282).

Это множество связей, лишь основные из которых перечислены выше, дают возможность вестибулярной системе играть центральную роль в генерировании двигательной эфферентации, обеспечивающей поддержание нужного положения тела и соответствующие глазодвигательные реакции. При этом вертикальная поза и походка определяются

^ ГЛАВА 12. ФИЗИОЛОГИЯ ЧУВСТВА РАВНОВЕСИЯ, СЛУХА И РЕЧИ 281

главным образом отолитовым аппаратом, тогда как полукружные каналы управляют в основном направлением взгляда. Именно афферентация от полукружных каналов вместе с глазодвигательными механизмами (см. с. 242) обеспечивает зрительный контакт с окружающей средой при движениях головы. При ее вращении или наклоне глаза движутся в противоположном направлении, поэтому изображение на сетчатке не меняется (см. статокинетические рефлексы). Горизонтальные компенсаторные движения глаз контролируются горизонтальным полукружным каналом, вертикальные - передним вертикальным каналом, их вращение - в основном задним вертикальным каналом.

Еще одна важная часть ЦНС, участвующая в этих процессах,-мозжечок, в который направляются некоторые первичные вестибулярные афференты (так называемый прямой сенсорный мозжечковый путь) помимо вторичных, о которых говорилось выше. Все они у млекопитающих оканчиваются в нем мшистыми волокнами (см. с. 108) на клеткахзернах узелка (nodulus) и клочка (flocculus), относящихся к древнему мозжечку (archicerebellum), и частично язычка (uvula) и околоклочка (paraflocculus) старого мозжечка (paleocerebellum). Клетки-зерна оказывают возбуждающее воздействие на клетки Пуркинье этих же областей, а аксоны последних направляются опять-таки в вестибулярные ядра. Такая цепь осуществляет тонкую «настройку» вестибулярных рефлексов. При дисфункции мозжечка эти рефлексы растормаживаются, что проявляется, например, в усиленном или спонтанном нистагме (см. ниже, а также с. 237), нарушении равновесия, выражающемся в тенденции к падениям, неустойчивой походке и избыточной амплитуде движений, особенно при ходьбе («петушиный шаг»). Перечисленные симптомы относятся к синдрому мозжечковой атаксии.

Типы импульсации нейронов вестибулярных ядер так же разнообразны, как и их контакты, поэтому подробно мы их не рассматриваем. Детали можно найти в специальной литературе [3, 10, 21].
^
Вестибулярные рефлексы; клинические тесты

Статические и статокинетические рефлексы. Равновесие поддерживается рефлекторно, без принципиального участия в этом сознания. Выделяют статические и статокинетические рефлексы [3, 10]. Вестибулярные рецепторы и соматосенсорные афференты, особенно от проприоцепторов шейной области, связаны и с теми и с другими. Статические рефлексы обеспечивают адекватное взаиморасположение конечностей, а также устойчивую ориентацию тела в пространстве, т.е. позные рефлексы. Вестибулярная афферентация поступает в данном случае от отолитовых органов. Статический рефлекс, легко

наблюдаемый у кошки благодаря вертикальной форме ее зрачка, - компенсаторное вращение глазного яблока при повороте головы вокруг длинной оси тела (например, левым ухом вниз). Зрачки при этом все время сохраняют положение, очень близкое к вертикальному. Такой рефлекс наблюдается и у человека. Статокинетические рефлексы - это реакции на двигательные стимулы, сами выражающиеся в движениях. Они вызываются возбуждением рецепторов полукружных каналов и отолитовых органов (более детальное описание на с. 104); их примеры - вращение тела кошки в падении, обеспечивающее ее приземление на все четыре лапы, или движения человека, восстанавливающего равновесие после того, как он споткнулся.

Один из статокинетических рефлексов - вестибулярный нистагм - мы рассмотрим подробнее в связи с его клиническим значением. Как говорилось выше, вестибулярная система вызывает различные движения глаз; нистагм как их особая форма наблюдается в начале более интенсивного, чем обычные короткие повороты головы, вращения. При этом глаза поворачиваются против направления вращения, чтобы удержать исходное изображение на сетчатке, однако, не достигая своего крайнего возможного положения, резко «перескакивают» в направлении вращения, и в поле зрения оказывается другой участок пространства. Затем следует их медленное возвратное движение.

Медленная фаза нистагма запускается вестибулярной системой, а быстрый «перескок» взглядапредмостовой частью ретикулярной формации (см. с. 238).

При вращении тела вокруг вертикальной оси раздражаются практически только горизонтальные полукружные каналы, т. е. отклонение их купул вызывает горизонтальный нистагм. Направление обоих его компонентов (быстрого и медленного) зависит от направления вращения и, таким образом, от направления деформации купул. Если тело вращается вокруг горизонтальной оси (например, проходящей через уши или сагиттально через лоб), стимулируются вертикальные полукружные каналы и возникает вертикальный, или вращательный, нистагм. Направление нистагма принято определять по его быстрой фазе, т.е. при «правом нистагме» взгляд «перескакивает» вправо.

При пассивном вращении тела к возникновению нистагма ведут два фактора: стимуляция вестибулярного аппарата и перемещение поля зрения относительно человека. Оптокинетический (вызванный зрительной афферентацией) и вестибулярный нистагмы действуют синергически. Нейронные связи, участвующие в этом, рассмотрены на с. 238.

Диагностическое значение нистагма. Нистагм (обычно - так называемый «поствращательный»)

^ 282 ЧАСТЬ III. ОБЩАЯ И СПЕЦИАЛЬНАЯ СЕНСОРНАЯ ФИЗИОЛОГИЯ

используется в клинике для тестирования вестибулярной функции. Испытуемый сидит в специальном кресле, которое длительное время вращается с постоянной скоростью, а затем резко останавливается. На рис. 12.4 показано поведение при этом купулы. Остановка вызывает ее отклонение в направлении, противоположном тому, в котором она отклонялась в начале движения; результат - нистагм. Его направление можно определить, регистрируя деформацию купулы; оно должно быть противоположным направлению предшествующего, движения. Запись движений глаз напоминает получаемую в случае оптокинетического нистагма (см. рис. 11.2). Она называется нистагмограммой.

Проведя тест на поствращательный нистагм, важно устранить возможность фиксации взгляда в одной точке, поскольку при глазодвигательных реакциях зрительная афферентация доминирует над вестибулярной и в некоторых условиях способна подавить нистагм. Поэтому испытуемому надевают очки Френцеля с сильновыпуклыми линзами и встроенным источником света. Они делают его «близоруким» и неспособным фиксировать взор, одновременно позволяя врачу без труда наблюдать движения глаз. Такие очки необходимы и в тесте на наличие спонтанного нистагма - первой, простейшей и наиболее важной процедуре при клиническом исследовании вестибулярной функции.

Еще один клинический способ запуска вестибулярного нистагма - термостимуляция горизонтальных полукружных каналов. Его преимущество - в возможности тестировать каждую сторону тела отдельно. Голову сидящего испытуемого отклоняют назад приблизительно на 60о (у лежащего на спине человека ее приподнимают на 30°), чтобы горизонтальный полукружный канал занимал строго вертикальное направление. Затем наружный слуховой проход промывают холодной или теплой водой. Наружный край полукружного канала расположен к нему очень близко, поэтому сразу же охлаждается или нагревается. В соответствии с теорией Барани плотность эндолимфы при нагревании понижается; следовательно, ее нагретая часть поднимается, создавая разность давлений по обе стороны купулы; возникающая деформация вызывает нистагм (рис. 12.3; изоображенная ситуация соответствует нагреванию левого слухового прохода). Исходя из его природы, этот вид нистагма называют калорическим. При нагревании он направлен к месту термического воздействия, при охлаждении в обратную сторону. У людей, страдающих вестибулярными расстройствами, нистагм отличается от нормального качественно и количественно. Детали его тестирования приведены в работе [3]. Следует отметить, что калорический нистагм может возникать в космических кораблях в условиях невесомости [28], когда различия плотности эндолимфы

несущественны. Следовательно, в его запуске участвует по крайней мере еще один, пока не известный механизм, например прямое термическое воздействие на вестибулярный орган.

Функцию отолитового аппарата можно тестировать, наблюдая глазодвигательные реакции при наклонах головы или при возвратно-поступательных движениях пациента, находящегося на специальной платформе.

^ Нарушения вестибулярной системы. Сильные раздражения вестибулярного аппарата часто вызывают неприятные ощущения: головокружение, рвоту, усиленное потоотделение, тахикардию и т. д. В таких случаях говорят о кинетозе (укачивании, «морской болезни») [23]. Скорее всего это результат воздействия комплекса необычных для организма стимулов (например, на море): кориолисова ускорения или расхождения между зрительными и вестибулярными сигналами. У новорожденных и больных с удаленными лабиринтами кинетозов не наблюдается.

Для понимания причин их возникновения необходимо учитывать, что вестибулярная система эволюционировала в условиях локомоции на ногах, а не в расчете на ускорения, возникающие в современных самолетах. Вследствие этого возникают сенсорные иллюзии, часто приводящие к авариям, например, когда пилот перестает замечать вращение или его остановки, неправильно воспринимает его направление и соответственно неадекватно реагирует.

^ Острое одностороннее нарушение функции лабиринта вызывает тошноту, рвоту, потливость и т. п., а также головокружение и иногда нистагм, направленные в здоровую сторону. У больных наблюдается тенденция к падению в сторону с нарушенной функцией. Очень часто, однако, клиническая картина осложнена неопределенностью направления головокружения, нистагма и падения. При некоторых заболеваниях, например синдроме Меньера. возникает избыточное давление эндолимфы в одном из лабиринтов; при этом первым результатом раздражения рецепторов оказываются симптомы, противоположные по характеру описанным выше. В противоположность ярким проявлениям острых вестибулярных нарушений хроническое выпадение функции одного из лабиринтов компенсируется сравнительно хорошо. Деятельность центрального отдела вестибулярной системы может перестраиваться так, что реакция на аномальное возбуждение ослабится [21, 26], особенно когда другие сенсорные каналы, например зрительные или тактильные, обеспечивают корректирующую афферентацию. Поэтому патологические проявления хронических вестибулярных расстройств более выражены в темноте.

^ ГЛАВА 12. ФИЗИОЛОГИЯ ЧУВСТВА РАВНОВЕСИЯ, СЛУХА И РЕЧИ 283

Острые двусторонние дисфункции у человека редки. В опытах на животных их симптомы намного слабее, чем при одностороннем нарушении, поскольку двустороннее прерывание афферентации вестибулярных ядер не затрагивает «симметрии» организма. Невесомость (при космических полетах) не влияет на полукружные каналы, но устраняет действие силы тяжести на отолиты, и отолитовые мембраны во всех макулах занимают положение, определяющееся их собственными упругими свойствами. Возникающая картина возбуждения никогда не встречается на Земле, что может приводить к симптомам укачивания. По мере привыкания к условиям невесомости большее значение приобретает зрительная афферентация, а роль отолитового аппарата снижается [16].
1   ...   28   29   30   31   32   33   34   35   36

Ваша оценка этого документа будет первой.
Ваша оценка:

Похожие:

Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconОбщеобразовательная программа дошкольного образования Авторский коллектив
Н., канд пед наук, Дякина А. А., доктор филол наук, Евтушенко И. Н., канд пед наук, Каменская В....
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconИ иммунотерапия инфекционных заболеваний
Авторы: канд мед наук, доц. Т. А. Канашкова; канд мед наук, доц. Ж. Г. Шабан; канд мед наук, доц....
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconБвк 56. 8 А 92
Ц, канд мед наук Н. С. Дмитриев, проф С. Н. Лапченко, проф. В. Т. Пальчун, проф. О. К. Патякина,...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconФлюороз зубов
Авторы: асс. Н. П. Руденкова; канд мед наук О. А. Козел; канд мед наук Н. И. Дмитриева; канд мед...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconКафедра стоматологии детского возраста
Авторы: д-р мед наук, профессор Т. Н. Терехова, канд мед наук, доцент А. Н. Кушнер, канд мед наук,...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconУчебно- методическое пособие утверждено на цикловой методической комиссии стоматологического факультета
В. Ф. Михальченко, доктор мед наук, доцент Э. С. Темкин, канд мед наук, ассистент Н. М. Морозова,...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconМетодические рекомендации Минск 2003 Удк 613. 6(075. 8)
А в т о р ы: канд мед наук, доц. В. И. Дорошевич; полк мед служ. Ю. Ю. Варашкевич; канд мед наук...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconМ. А. Тучинская*, канд мед наук; Салех С. Х. Нажар*; О. И. Шушляпин*, канд мед наук; Л. Л. Мищенко*;
Патофизиологическая природа и патогенетическая коррекция реперфузионного синдрома c реперфузионным...
Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconМэгид С. Михаил Перевод с английского под редакцией академика pamh а. А. Бунятяна, Издательство бином

Перевод с английского канд мед наук Н. Н. Алипова, канд биол наук Н. Ю. Алексеенко, д-ра биол наук М. А. Каменской, канд биол наук О. В. Левашова, канд биол наук Ю. Б. Шмуклера под редакцией акад. П. Г. Костюка iconМетодические рекомендации Минск 2004 удк
Р е ц е н з е н ты, доцент кафедры микробиологии, вирусологии и иммунологии, : канд мед наук Н. Ф....
Разместите кнопку на своём сайте:
Медицина


База данных защищена авторским правом ©MedZnate 2000-2019
обратиться к администрации | правообладателям | пользователям
Документы