|
Скачать 0.87 Mb.
|
^
Ростовые движения. Несмотря на прикрепление большинства растений к определенному субстрату, органы их или части органов находятся в связи с ростом в движении. Высшие растения изменяют положение своих органов в связи с различными раздражениями. Эти изменения ориентировки органов в пространстве называются тропизмами. Геотропизм. Свойство органа расти по направлению к центру земли называется положительным геотропизмом. Он свойствен главному корню. Свойство органа расти в направлении, противоположном действию силы тяжести, называется отрицательным геотропизмом. Им обладает главный стебель (ось первого порядка). Фототропизм. Изгиб надземных частей высших растений под влиянием света называется фототропизмом. Обычно стебли обладают положительным фототропизмом. Листья могут располагаться по отношению к свету по-разному: одни перпендикулярно, другие под тем или иным углом в зависимости от интенсивности освещения и индивидуальности самого растения. Корни большинства растений отрицательно фототропичны. Изгиб органа в сторону света объясняется тем, что свет задерживает растяжение клеток, и поэтому затемненная сторона растет быстрее, вызывая положительный фототропизм. Хемотропизм. Ростовые изгибы под влиянием химических раздражителей вызываются односторонним воздействием ионов некоторых солей. Под влиянием анионов корень изгибается положительно; под влиянием катионов тех же солей — отрицательно. Благодаря хемотропизму осуществляется рост пыльцевой трубки в пестике, рост корней в сторону удобренных участков почвы. ^ . Изменение роста корней в сторону благоприятного теплового режима называется положительным термотропизмом, а в сторону благоприятного воздушного режима — положительным аэротропизмом. Гидротропизм. Корни обычно растут в почве в сторону влажной среды. Они положительно гидротропичны. Часто на растение действует не один, а несколько факторов сразу. Тогда реакция организма будет на тот фактор, влияние которого сильнее. ^ Настические ростовые движения (настии) вызываются факторами, действующими не односторонне, а равномерно на все растение. Они свойственны органам, имеющим двустороннее (дорзовентральное) строение, лепесткам, листьям и т. п. Различают настии, вызываемые сменой дня и ночи. Цветки душистого табака, дурмана закрываются днем, а раскрываются ночью. Наоборот, цветки льна, вьюнка открываются утром и закрываются на ночь. Такие движения называются никтинастическими. Другой тип настии — термонастии. Они наблюдаются при смене температуры. Если внести закрытые цветки тюльпанов, шафранов из холодного помещения в теплое, то они через некоторое время раскроются. Наконец, некоторые цветки, например, тюльпанов, раскрываются на свету и закрываются в пасмурную погоду или к вечеру. Аналогичное явление можно наблюдать на корзинках одуванчика. Такие настии называются фотонастиями. Сейсмонастические движения вызываются прикосновением, встряхиванием, толчками. Классическим объектом для наблюдения подобных движений является стыдливая мимоза. Если прикоснуться к листу мимозы, то все ее листочки сложатся. При сотрясении растения все ее листья целиком опускаются. Прикосновение к основанию тычиночных нитей барбариса вызывает их изгиб и удар пыльника о рыльце. ^ (нутации) отличаются ритмичностью. Они возникают в результате колебаний тургора, вызываемых изменениями в вязкости и проницаемости цитоплазмы. Таким образом, было выяснено, что рост стебля происходит толчками. Верхушка его растет не вертикально, а по спирали. Вопросы для самоконтроля 1. Что такое рост и развитие растений? 2. Какие фазы при своем росте проходит клетка? 3. Какими свойствами обладают ауксины? 4. Каково основное действие гиббереллинов? 5.Охарактеризуйте действие ингибиторов роста. 6. Опишите действие внешних условий на рост растений. 7. Приведите примеры ростовых движений. Рекомендуемая литература: 3, 4, 6, 11, 12, 13. ^ Лабораторная работа № 1Сравнение проницаемости мембран живых и мертвых клетокЗадание: выявить различия в проницаемости мембран живых и мертвых клеток и сделать вывод о причинах этих различий. ^ пробирки, штатив для пробирок, скальпель, спиртовка или газовая горелка, 30%-й раствор уксусной кислоты, корнеплод столовой свеклы. ^ 1. Корнеплод свеклы после удаления покровных тканей разрезают на кубики (сторона кубика 5 мм) и тщательно промывают водой, чтобы удалить пигмент, вышедший из поврежденных клеток. 2. По одному кусочку свеклу опускают в три пробирки. В первую и вторую наливают по 5 мл воды, в третью — 5 мл 30%-го раствора уксусной кислоты. Первую пробирку оставляют для контроля. Содержимое второй кипятят 2—3 минуты. 3. В вакуолях клеток корнеплода столовой свеклы содержится бетацианин — пигмент, придающий ткани корнеплода окраску. Тонопласты живых клеток непроницаемы для молекул этого пигмента. После гибели клеток тонопласт теряет свойство полупроницаемости, становится проницаемым, молекулы пигмента выходят из клеток и окрашивают воду. Во второй и третьей пробирках, где клетки были убиты кипячением или кислотой, вода окрашивается, а в первой пробирке остается неокрашенной. 4. Записать результаты наблюдений. ^ Задание: изучить под микроскопом явления тургора, плазмолиза и деплазмолиза в клетках эпидермы синего лука. ^ микроскопы, препаровальные принадлежности, спиртовки, синий лук, корни столовой свеклы, 30%-й раствор сахара, 5—8%-й раствор калийной селитры. ^ 1. Сделать плоскостной срез эпидермы синего лука, положить его на предметное стекло в каплю воды. 2. Закрыть каплю покровным стеклом и наблюдать за клетками в состоянии тургора в микроскоп. 3. Взять каплю 30%-го раствора сахара и поместить ее рядом с покровным стеклом. 4. Касаясь фильтровальной бумагой противоположного конца покровного стекла, произвести замену воды в препарате раствором сахара. 5. Снова провести наблюдение под микроскопом. Если плазмолиз еще не заметен, повторить замену воды раствором сахара. Под микроскопом будет хорошо заметен плазмолиз в живых клетках эпидермы. 6. Провести опыт в обратном порядке, т. е. снова вернуть воду и пронаблюдать явление деплазмолиза. 7. Зарисовать клетки в состоянии тургора, плазмолиза и деплазмолиза. 8. Для доказательства того, что плазмолиз и деплазмолиз происходят только в живых клетках, параллельно провести такой опыт. Один из срезов эпидермы лука, помещенный в каплю воды, подержать над пламенем спиртовки, чтобы убить клетки. Затем нанести раствор сахара и посмотреть, происходит ли плазмолиз. Описанный опыт позволяет познакомиться не только с процессами тургора, плазмолиза и деплазмолиза, но и с процессом поступления веществ в клетку (в данном случае молекул сахара из раствора). При изучении явлений плазмолиза и деплазмолиза в клетках корня столовой свеклы порядок работы такой же, но вместо раствора сахара лучше использовать 5%-й раствор калийной селитры. ^ Задание: определить количество воды, испаряемое растением за определенный промежуток времени, весовым методом. ^ весы, разновесы, ножницы, посуда, подставка, живые растения. Порядок работы 1. U-образную трубку укрепить на подставке и налить в нее воду. Срезать c растения один лист (или небольшую ветвь с двумя листьями) и при помощи ватной пробки укрепить его в одном колене (ватная пробка не должна касаться воды, иначе вода будет испаряться и через нее). Другое колено закрыть каучуковой или пластмассовой пробкой (если нет такой трубки, можно взять простую пробирку и поверхность воды залить растительным маслом, чтобы не было испарения). 2. Взвесить прибор и одновременно маленький кристаллизатор, наполненный водой. Приборчик и кристаллизатор поместить на окно. 3. Через 1—2 ч произвести повторное взвешивание. Масса уменьшается в обоих случаях, так как происходит испарение воды. ^ Задание: наблюдать за устьичными движениями, объяснить причину устьичных движений, зарисовать устьица в воде и в растворах 5-ти и 20%-го глицерина. Цель работы: наблюдать за устьичными движениями в воде и в растворе глицерина. ^ растворы глицерина (5-ти и 20%-й), 1М раствор сахарозы, микроскопы, предметные и покровные стекла, препаровальные иглы, фильтровальная бумага, бюксы, листья любых растений. ^ 1. Приготовить несколько срезов нижней эпидермы листа и поместить их на 2 ч в 5%-й раствор глицерина. Глицерин проникает в вакуоли замыкающих клеток, понижает их водный потенциал и, следовательно, повышает их способность насасывать воду. Срезы помещают на предметное стекло в том же растворе, отмечают состояние клеток и зарисовывают их. 2. Заменить глицерин водой, оттягивая его из-под стекла фильтровальной бумагой. При этом наблюдается открывание устьичных щелей. Препарат зарисовать. 3. Воду заменить сильным осмотиком — 20%-ным раствором глицерина или 1М раствором сахарозы. Наблюдают закрывание устьиц. 4. Сделать выводы. ^ Задание: изучить процесс образования первичного крахмала в листьях. Материалы и оборудование: спиртовки, водяные бани, ножницы, электроплитки, лампы накаливания в 200—300 Вт, посуда, живые растения (тыква, фасоль, пеларгония, примула и др.), этиловый спирт, раствор йода в йодистом калии. ^ 1. При помощи крахмальной пробы доказать, что в процессе фотосинтеза образуется крахмал. Хорошо политое растение надо поставить на 2—3 дня в темное место. За это время произойдет отток ассимилятов из листьев. Новый крахмал образоваться в темноте не может. Далее нужно срезать лист, в котором произошло обескрахмаливание, и поставить его в стакан или пробирку с водой на яркий свет. Чтобы получить контраст от процесса фотосинтеза, часть листа надо затемнить. Для этого можно использовать фотонегатив или два одинаковых светонепроницаемых экрана, прикрепив их сверху и снизу. Рисунки на экране (вырезки) могут быть самыми различными. Лампу накаливания в 200—300 Вт помещают на расстоянии 0,5 м от листа. Через час или два лист надо обработать, как указывалось выше. Удобнее это делать на плоской тарелке. Одновременно обрабатывают лист, который оставался затемненным все время. Части, подвергавшиеся освещению, окрашиваются в синий цвет, а остальные имеют желтую окраску. Летом можно видоизменить опыт — закрыть на растении несколько листьев, надев на них пакетики из черной светонепроницаемой бумаги с соответствующими вырезами; через двое — трое суток, в конце солнечного дня, срезать листья, прокипятить их сначала в воде, а потом обесцветить спиртом и обработать раствором йода в йодистом калии. Затемненные места листьев будут светлыми, а освещенные станут черными. У некоторых растений (например, у лука) первичным продуктом фотосинтеза является не крахмал, а сахар, поэтому к ним крахмальная проба неприменима. 2. Записать результаты наблюдений. ^ Задание: получить спиртовую вытяжку пигментов, произвести их разделение и ознакомиться с основными свойствами пигментов. ^ ножницы, ступки с пестиками, штативы с пробирками, посуда, спиртовки, водяные бани, свежие или сухие листья (крапивы, аспидистры, плюща или других растений), этиловый спирт, бензин, 20%-й раствор NaОН (или КОН), сухой мел, песок. ^ 1. Поместить в чистую ступку измельченные ножницами сухие листья, добавить немного мела для нейтрализации кислот клеточного сока. Тщательно растереть массу пестиком, приливая этиловый спирт (100 см3), затем профильтровать раствор. Полученная вытяжка хлорофилла обладает флюоресценцией: в проходящем свете она зеленая, в отраженном свете — вишнево-красная. 2. Разделить пигменты методом Крауса. Для этого надо налить в пробирку 2—3 см3 вытяжки и добавить полуторный объем бензина и 2—3 капли воды; затем нужно встряхнуть пробирку и подождать, когда станут хорошо заметны два слоя - вверху бензиновый, внизу спиртовой. Если разделения не произойдет, следует добавить еще бензина и снова встряхнуть пробирку. В случае появления мути надо добавить немного спирта. Так как бензин в спирте не растворяется, он оказывается наверху. Зеленый цвет верхнего слоя говорит о том, что в бензин перешел хлорофилл. Кроме него в бензине растворяется и каротин. Внизу, в спирте, остается ксантофилл. Нижний слой имеет желтый цвет. Далее надо разделить хлорофилл и каротин. Для этого в пробирку с вытяжкой (2—3 см3) нужно добавить 3—5 капель 20%-го раствора NaОН, встряхнуть пробирку, прилить равный объем бензина, снова встряхнуть. После отстаивания раствора образуются два слоя. В результате омыления хлорофилла происходит отщепление спиртов и образование натриевой соли хлорофиллина, которая, в отличие от хлорофилла, не растворяется в бензине. Для лучшего омыления пробирку с добавлением NaОН можно поставить в водяную баню с кипящей водой и, как только раствор закипит, вынуть. После этого приливают бензин. В бензиновый слой (верхний) перейдут каротин и ксантофилл (цвет будет желтый), а в спиртовой — натриевая соль хлорофилловой кислоты. ^ Задание: доказать, что при дыхании растений выделяется СО2, зарисовать прибор, который помогает обнаруживать дыхание по выделению СО2, сделать подписи к рисунку. ^ 2 стеклянные банки вместимостью 300—400 мл, 2 резиновые пробирки с отверстиями для воронки и трубки, 2 воронки, 2 изогнутые в виде буквы «П» стеклянные трубки длиной 18—20 см и диаметром 4—5 мм, 2 пробирки, химический стакан, раствор Ва(ОН)2, проросшие семена пшеницы, подсолнечника, кукурузы, гороха и др. ^ 1. В стеклянную банку насыпают 50— 60 г проросших семян, плотно закрывают ее пробкой, в которую вставлены воронка и изогнутая стеклянная трубка и оставляют на 1— 1,5 ч. За это время в результате дыхания семян в банке накопится диоксид углерода. Он тяжелее воздуха, поэтому сосредоточен в нижней части банки и не попадает в атмосферу через воронку или трубку. 2. Одновременно берут контрольную банку без семян, также закрывают ее резиновой пробкой с воронкой и стеклянной трубкой и ставят рядом с первой банкой. 3. Свободные концы стеклянных трубок опускают в две пробирки с баритовой водой. В обе банки через воронки начинают понемногу наливать воду. Вода вытесняет из банок воздух, обогащенный СО2, который поступает в пробирки с раствором Ва(ОН)2. В результате баритовая вода мутнеет. 4. Сравнивают степень помутнения Ва(ОН)2 в обеих пробирках. ^ Задание: проделать опыт и вычислить интенсивность дыхания исследуемых объектов в зависимости от вариантов опыта. ^ чашки Конвея, вазелин, бюретки, штативы, фильтровальная бумага, ножницы, весы, разновесы, реактивы: 0,1н Ва(ОН)2; 0,1н HCl, фенолфталеин, любые проростки и взрослые растения или их органы. ^ 1. Чашки Конвея перед опытом калибруют, они должны быть одинакового объема для контрольного и опытного вариантов. Каждый вариант опыта ставят в трех повторностях. 2. Во внешний круг чашки Конвея раскладывают навеску растительного материала массой 0,5—1,0 г. Во внутренний цилиндр наливают 1 или 2 мл 0,1н Ва(ОН)2.. Чашку герметично закрывают притертой крышкой (так, чтобы на крышке проявился прозрачный контур шлифа чашки) и ставят на 20 — 40 мин в темноту (для исключения фотосинтеза в зеленых тканях растений). За время экспозиции накопившийся в объеме чашки Конвея углекислый газ реагирует с гидроксидом бария: СО2 + Ва(ОН)2 = ВаСО3 + Н2О. Избыток Ва(ОН)2 оттитровывают 0,1н НС1 по фенолфталеину до исчезновения розовой окраски. 3. Одновременно с опытной ставят контрольную чашку Конвея (без навески). В нее наливают такой же объем раствора 0,1н Ва(ОН)2, закрывают притертой крышкой и оставляют рядом с опытной чашкой. Гидроксид бария в этой чашке реагирует с углекислым газом, изначально находившимся в ее объеме в составе воздуха. Избыток барита оттитровывают. 4. По разнице объемов раствора соляной кислоты, пошедшей на оттитровывание избытка Ва(ОН)2 в контрольной и опытной чашках, вычисляют интенсивность дыхания (И. д.): ![]() где VНС1к — объем 0,1н НС1, пошедший на титрование избытка Ва(ОН)2в контрольной чашке; VНС1оп — объем 0,1н НС1, пошедший на титрование избытка Ва(ОН)2в опытной чашке; Р — масса навески, г; t — время, ч; 2,2 — коэффициент пересчета НС1 в СО2 (1 мл 0,1н НС1 или Ва(ОН)2 эквивалентен 2,2 мг СО2). ^ Задание: изучить значение различных минеральных элементов для роста гриба аспергилла. ^ весы, термостат, ватные пробки, фильтры, пять колб по 100 см3, пробирки, пипетка, два стакана, воронка, минеральные соли, сахароза, органическая кислота (лимонная), культура гриба аспергилла, выращенная на кусочках картофеля или хлеба в течение 3—4 дней. ^ 1. Вырастить гриб на питательных смесях. Установлено, что аспергилл предъявляет к условиям минерального питания примерно такие же требования, как высшие растения. Из минеральных элементов гриб не нуждается только в кальции. Питательные смеси готовят в колбах на 100 см3 и составляют по определенной схеме (табл. 1). Нумерация колб соответствует нумерации вариантов опыта. Внизу записывают результаты опыта. Таблица 1 Схема составления питательных смесей
Лимонную кислоту добавляют для создания кислой среды, благоприятной для аспергилла, но подавляющей развитие других микроорганизмов. 2. В пробирку или колбочку налить стерильную воду и поместить в нее мицелий гриба, взятый стерильной петлей, размешать содержимое вращением между пальцами или ладонями. Полученную суспензию внести стерильной пипеткой во все колбы. Закрыть колбы ватными пробками и поставить в термостат при температуре 30—35 °С. Наблюдение провести через неделю. Сущность опыта заключается в том, что, определяя массу мицелия гриба, выращенного на различных питательных смесях, можно узнать его потребность в отдельных элементах. 3. Произвести взвешивание, для чего взять два чистых стакана, одну воронку и несколько одинаковых бумажных фильтров. Взвесить один стакан (№ 1) с воронкой и фильтром и записать массу. Затем поставить воронку в другой стакан (№ 2), перенести на фильтр мицелий гриба из первой колбы, промыть водой и после стенания воды перенести воронку обратно в стакан № 1. Снова произвести взвешивание. Ясно, что результат будет больше, так как добавился мицелий гриба. Вычесть из второго результата первый и узнать массу мицелия гриба. Так поступить со всеми колбами. 4. Записать результаты наблюдения. Таким образом, будет установлено, как влияет отсутствие N, Р, К и всех элементов минерального питания на развитие мицелия гриба. ^ Задание: ознакомиться с расположением зоны роста в молодых корешках с помощью нанесения меток тушью. ^ посуда, тонкие кисточки или заостренные спички, проростки тыквы (фасоли или подсолнечника), тушь, миллиметровая бумага, вата, тонкие иголки, фильтровальная бумага. ^ 1. Вырастить во влажных опилках несколько проростков тыквы, фасоли или подсолнечника. К началу опыта у них должны образоваться прямые корешки длиной около 2 см. 2. Прежде чем вынимать проростки, подготовить влажную камеру для наблюдения за их дальнейшим ростом: взять банку, закрыть внутренние стенки ее фильтровальной бумагой, на дно налить немного воды; пробку разрезать пополам (продольно), чтобы к одной половинке приколоть проростки. 3. Освободить проростки из опилок и обсушить корешки фильтровальной бумагой. Выбрать три проростка с прямыми корешками, положить на миллиметровую бумагу и тушью нанести на корешки метки через каждые 2 мм (первую метку сделать очень близко к кончику, таких меток получится около 10). 4. Взять узкую полоску фильтровальной бумаги и приколоть ее вместе с проростками к внутренней стороне половинки пробки. Конец фильтровальной бумаги должен при опускании в банку касаться воды. Вставить пробку с проростками в банку и закрыть оставшееся отверстие ватой. Температура окружающей среды должна быть +20—+25 °С. 5. Через сутки произвести измерения. Для определения приростов вычитают из данных измерения первоначальную длину каждого участка — 2 мм. 6. Полученные результаты записать в виде таблицы. Форма таблицы приведена ниже (табл. 2). Таблица 2
Задание: изучить влияние внешних условий (температуры, света) на скорость роста растений и формирование листьев. Материалы и оборудование: вазоны, песок, посуда, темная камера, холодильная установка, семена тыквы (или фасоли). ^ 1. Взять семена тыквы (или фасоли), намочить их и, когда они набухнут и начнут прорастать, высадить в небольшие вазоны с песком по три семени (песок, а не почву берут для того, чтобы исключить различные условия минерального питания). 2. Примерно через 5—6 дней, когда растения дадут всходы, измерить высоту их стеблей, затем поместить вазоны в различные условия. 3. Через 7—10 дней сделать окончательные измерения и выводы. 4. Результаты наблюдений записать в таблицу по следующей форме (табл. 3): Таблица 3
|