Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon

Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии





Скачать 0.87 Mb.
Название Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии
страница 3/11
Дата 08.04.2013
Размер 0.87 Mb.
Тип Учебно-методическое пособие
1   2   3   4   5   6   7   8   9   10   11
^

1.2. Обмен веществ и энергии в клетке


Для реакций обмена веществ характерны организованность и упорядоченность. Морфологическому расчленению клетки соответствует строгая физиологическая специализация всех ее структур. В митохондриях действует система дыхания и фосфорилирования, в рибосомах идет синтез белка.

Биологические реакции проходят с помощью многочисленных ферментов. Ферменты в большинстве случаев располагаются мономолеку-лярными слоями на мембранах и гранулах.

В сложном многообразии реакций обмена веществ выделяются два противоположных по характеру потока: биосинтез и расщепление.

В процессе биосинтеза из простых веществ образуются сложные, из низкомолекулярных — высокомолекулярные. Происходит синтез белков, углеводов, жиров, нуклеиновых кислот. Реакции идут с поглощением энергии. Совокупность биосинтетических реакций — ассимиляция, или пластический обмен.

В реакциях расщепления сложные вещества распадаются на более простые, высокомолекулярные — на низкомолекулярные. Крахмал превращается в глюкозу, затем СО2 и Н2О, белки — в смесь аминокислот, нуклеиновые кислоты — в смесь нуклеотидов. Реакции расщепления сопровождаются освобождением энергии. Совокупность реакций расщепления — диссимиляция, или энергетический обмен. Диссимиляция — переход веществ, энергетически более богатых, в вещества, бедные энергией.

Ассимиляция и диссимиляция находятся в неразрывной связи. Реакции биосинтеза для своего осуществления нуждаются в затрате энергии, которая черпается из реакций расщепления. В ходе диссимиляции возникают продукты, используемые как исходные для ассимиляции.


Вопросы для самоконтроля

  1. Что такое избирательная проницаемость?

  2. В чем различие между активным и пассивным поступлением веществ в клетку?

  3. Что такое осмос, осмотическое давление?

  4. Каковы физиологический механизм, лежащий в основе тургорного натяжения, и роль тургора в жизни растения?

  5. Что такое сосущая сила?

  6. Каким путем осуществляется взаимосвязь энергетического и пластического обмена?


Рекомендуемая литература: 3, 4, 6, 11, 12, 13.
^

Тема 2. ВОДНЫЙ РЕЖИМ РАСТЕНИЙ

2.1. Общая характеристика водного обмена
растительного организма


Вода является основной составной частью растительных организмов. Ее содержание доходит до 90 % от массы организма, и она участвует прямо или косвенно во всех жизненных проявлениях. Вода — это та среда, в которой протекают все процессы обмена веществ. Она составляет основную часть цитоплазмы, поддерживает ее структуру, устойчивость входящих в состав цитоплазмы коллоидов, обеспечивает определенную конформацию молекул белка. Высокое содержание воды придает содержимому клетки (цитоплазме) подвижный характер. Вода — непосредственный участник многих химических реакций. Все реакции гидролиза, многочисленные окислительно-восстановительные реакции идут с ее участием.

Водный ток обеспечивает связь между отдельными органами растений. Питательные вещества передвигаются по растению в растворенном виде. Насыщенность водой (тургор) обеспечивает прочность тканей, сохранение структуры травянистых растений, определенную ориентировку органов растений в пространстве. Рост клеток в фазе растяжения идет главным образом за счет накопления воды в вакуоли.

Таким образом, вода обеспечивает протекание процессов обмена, коррелятивные взаимодействия, связь организма со средой. Для нормальной жизнедеятельности клетка должна быть насыщена водой.
^

2.2. Поступление воды в растение


Растение получает воду из почвы. Вода в растении находится как в свободном, так и связанном состоянии. Свободная вода легко передвигается, вступает в различные биохимические реакции, испаряется в процессе транспирации и замерзает при низких температурах. Связанная вода имеет измененные физические свойства вследствие взаимодействия с неводными компонентами. Эти взаимодействия представляют собой процессы гидратации, вследствие чего связанную воду называют гидратной водой. Различают два основных процесса гидратации: 1) притяжение диполей воды к заряженным частицам; 2) образование водородных связей с полярными группами органических веществ — между водородом воды и атомами О и N.

Воду, гидратирующую коллоидные частицы (прежде всего белки), называют коллоидно-связанной, а гидратирующую растворенные вещества (минеральные соли, сахара, органические кислоты и др.) — осмотически связанной.

Использование воды растением зависит также от структуры почвы. Мелкокомковатая структура с хорошим воздушно-водным режимом является наилучшей. В ней хорошо растут корневые волоски, через которые вода поступает в растение. Чтобы проникнуть внутрь клетки корневого волоска, вода должна пройти через его стенку.
^

2.3. Передвижение воды по растению


Поглощение воды корневой системой происходит главным образом клетками зоны растяжения и зоны корневых волосков. Из корневого волоска вода передвигается по клеткам первичной коры в центральный цилиндр.

В сосуды вода поступает под определенным давлением, которое можно обнаружить благодаря следующему опыту. Если весной, когда листья еще не появились, срезать стебель, надеть на него резиновую трубку с вставленной в нее стеклянной трубочкой, то через некоторое время в ней появится жидкость. Ее нагнетают корни. С помощью манометра можно определить величину давления, под которым жидкость входит в сосуды. Это выделение воды благодаря корневому давлению называется плачем растения. Его легко обнаружить весной у винограда и березы, если сломить веточку. Выделяющийся сок называется пасокой. В нем содержится сахар (1,5—3 %), органические кислоты, азотистые и зольные вещества.

Выделение капель воды листьями под влиянием корневого давления можно наблюдать в теплую влажную погоду у земляники, манжетки, настурции и некоторых других растений. На зубчиках листьев образуются капли воды, которая выделяется через гидатоды (водные устьица). Это явление называется гуттацией.

Если поставить под стеклянный колпак проростки злаков, хорошо полив их, то вскоре можно будет видеть на кончиках листьев капли воды, выделяющиеся под влиянием корневого давления.

Итак, корневое давление является нижним двигателем водного тока в растении. Величина его небольшая (23 атмосферы). У деревьев корневое давление можно обнаружить лишь весной, когда в почве много воды, а листья еще не образовались.
^

2.4. Транспирация воды листьями


Со всякой водной поверхности происходит испарение — переход воды из жидкого состояния в парообразное. Это физическое явление. Листья растения пропитаны водой. С их поверхности (особенно через устьица) вода постоянно испаряется, но это будет явление биологическое, связанное с растительным организмом, его особенностями. Оно называется транспирацией. Благодаря транспирации в поверхностных клетках листа возникает сосущая сила (равная примерно 0,1 атм), которая потянет воду из рядом расположенных клеток, и так далее, вплоть до сосудов. Таким образом, в растении создается верхний двигатель тока воды. У деревьев сосущая сила листьев достигает 20 атм, у травянистых растений 2—3 атм. Эта сосущая сила заставляет воду из корней подниматься по ксилеме, в основном по сосудам — полым трубкам. Столбики воды в сосудах не разрываются благодаря силе сцепления частиц воды между собой и со стенками сосудов. Эта сила может достичь 300 атм.

Таким образом, движение воды из почвы по растению обусловливается тремя силами: корневым давлением, сосущей силой листьев и силой сцепления частиц воды. Транспирация происходит и летом, и зимой; опадение листьев осенью — это приспособительная особенность растений для уменьшения транспирации, так как зимой подача воды корнями из замерзшей почвы сильно затруднена. Ветер усиливает транспирацию.

Различают устьичную и кутикулярную транспирацию. Первая раз в 20 интенсивнее, чем вторая.

Процесс устьичной транспирации можно подразделить на следующие этапы:

  1. Переход воды из клеточных оболочек, где она находится в капельно-жидком состоянии, в межклетники. Это собственно процесс испарения. На этом этапе растение способно регулировать процесс транспирации (внеустьичная транспирация). Вода испаряется из капилляров. Когда воды в клетках достаточно, клеточные оболочки насыщены водой, силы поверхностного натяжения ослаблены. В этом случае молекулы воды легко отрываются и переходят в парообразное состояние, заполняя межклетники. При уменьшении содержания воды увеличиваются силы поверхностного натяжения, и вода с большей силой удержи-вается в клеточных оболочках. В результате интенсивность испарения сокращается. Таким образом, уже на первом этапе растение испаряет тем меньше воды, чем меньше ее содержится.

  2. Выход паров воды из межклетников через устьичные щели. Как только часть паров воды выйдет из межклетников через устьичные щели, так сейчас же этот недостаток восполняется за счет испарения воды с поверхности клеток. Поэтому степень открытости устьиц является основным механизмом, регулирующим интенсивность транспирации. На этом этапе вступает в действие устьичная регулировка транспирации. При недостатке воды в листе устьица автоматически закрываются.

  3. Диффузия паров воды от поверхности листа в более далекие слои атмосферы. Этот этап регулируется лишь условиями внешней среды.

Известно, что одно растение кукурузы за вегетационный период испаряет 150 кг воды, подсолнечника — 200 кг, гороха — 4 кг. Один гектар поля теряет за вегетационный период примерно 2000—2500 т воды.

Транспирация необходима растению, так как благодаря ей в растение поступают нужные ему минеральные вещества и не происходит перегрева листьев.

Количество воды, испаряемое с 1 м2 листовой поверхности за 1 ч, называется интенсивностью транспирации.

Очень небольшое количество воды, проходящей по растению, используется на образование органического вещества. Оно составляет всего 0,2 %, а 99,8 % испаряется. Количество воды, необходимое растению для создания 1 г сухого вещества, называется транспирационным коэффициентом. Его величина колеблется от 300 до 1000 г. У кукурузы он равен 233, у гороха — 416, гречихи — 578, картофеля — 636.

Транспирационный коэффициент может меняться в зависимости от внешних условий: влажности воздуха, температуры, влажности почвы, света, ветра.

Другой единицей сравнения растений в этом отношении будет продуктивность транспирации — количество граммов сухого вещества, образующегося при испарении 1 л (1000 г) воды. Чаще всего она равна 3—5 г.

^ Относительная транспирация — отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же промежуток времени.

^ Экономность транспирации — количество испаряемой воды (в мг) на единицу (1 кг) воды, содержащейся в растении.


Вопросы для самоконтроля

  1. Какие вещества поступают в растение с восходящим током? Каковы причины восходящего тока?

  2. Как происходит движение органических веществ по растению?

  3. Что такое транспирация, от чего она зависит?

  4. Что называют транспирационным коэффициентом? Чему он примерно равен?

  5. Чем обусловливается транспирация?

  6. Какие опыты доказывают существование корневого давления?

  7. Какой опыт показывает сосущее действие листьев?

  8. Что происходит при кольцевом надрезе веточки дерева?


Рекомендуемая литература: 3, 4, 6, 11, 12, 13.
1   2   3   4   5   6   7   8   9   10   11

отлично
  1
Ваша оценка:

Похожие:

Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Учебно-методическое пособие по дисциплине «сестринское дело в гериатрии» для самостоятельной работы

Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Учебно-методическое пособие по сестринскому делу в психиатрии для студентов заочного отделения по

Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Учебно-методическое пособие по сестринскому делу в психиатрии для студентов заочного отделения по

Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Методическое руководство и контрольные задания для студентов 5 курса заочного отделения фармацевтического

Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Учебно-методическое пособие для студентов педиатрического факультета Воронеж 2001 г
Черных А. В., Витчинкин В. Г., Котюх В. А., Малеев Ю. В., Якушева Н. В., Исаев А. В., Левтеев Е....
Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Учебное пособие для студентов заочного отделения Факультета менеджмента и высшего сестринского образования

Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Экзаменационные вопросы по биологии для студентов Iкурса заочного отделения фармацевтического факультета
Определение понятия жизни на современном этапе науки. Фундаментальные свойства живых систем
Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Методическое пособие по органической химии для заочного отделения. Содержание

Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Методическое пособие для студентов дневного отделения факультета природопользования (специальность

Учебно-методическое пособие для студентов заочного отделения факультета экологии и биологии icon Учебно-методическое пособие Рекомендовано методической комиссией биологического факультета для студентов
Учебно-методическое пособие предназначено для студентов очной формы обучения для проведения теоретических...
Разместите кнопку на своём сайте:
Медицина


База данных защищена авторским правом ©MedZnate 2000-2016
allo, dekanat, ansya, kenam
обратиться к администрации | правообладателям | пользователям
Документы