|
Скачать 7.16 Mb.
|
192 193 ^ осуществляется за счет активации электрофизиологических и биохимических процессов. В частности, увеличивается проницаемость клеточных мембран для Ыа+ и Са2+, поступление которых по медленным каналам в клетки ускоряет их деполяризацию (хронотропный эффект). Возрастание тока Са2+ в клетки ведет также к усилению сокращений сердца (инотропный эфект). По мнению большинства исследователей, эффекты симпатического нерва реализуются посредством р-адренорецепторов. Роль а-адренорецепторов дискутируется. Симпатические нервы ускоряют проведение возбуждения в области атриовентрикуляр-ного узла. Возрастание скорости проведения возбуждения увеличивает синхронизацию деполяризации и сокращения кардиоми-оцитов, что также усиливает сердечные сокращения. Норадреналин и адреналин активируют также метаболические процессы - распад гликогена, обеспечивающего энергией сокращающееся сердце. Это осуществляется посредством активации внутриклеточного фермента аденилатциклазы, которая ускоряет образование циклического аденозинмонофосфата - цАМФ, последний активирует фосфорилазу, ускоряющую расщепление гликогена. Освобождение энергии обеспечивает усиление сокращений всех кардиомиоци-тов - и предсердий, и желудочков. ^ имеются в блуждающих и симпатических нервах. Афферентная импульсация от механорецепторов сердца и сосудистых рефлексогенных зон играет важную роль в регуляции деятельности сердца: по принципу отрицательной обратной связи она обеспечивает торможение деятельности сердца при высоком кровяном давлении и'усиление сердечных сокращений при уменьшении кровяного давления. Эти эффекты реализуются с помощью эфферентных влияний блуждающего и симпатического нервов. Причем симпатические нервы включаются только при падении АД, поскольку тонус их для сердца не выражен. С барорецепторов полых вен и правого предсердия при повышении давления в них возникает рефлекторная тахикардия (рефлекс Бейнбриджа) вследствие возбуждения симпатической нервной системы. Этот рефлекс обеспечивает разгрузку правого желудочка от повышенного притока крови к нему. Важную роль в регуляции деятельности сердца играют рефлексы, возникающие с хеморецепторов синокаротидной и аортальной рефлексогенных зон, а также других сосудов: в условиях гипоксии развивается рефлекторная тахикардия, а при дыхании человека чистым кислородом - брадикардия. ^ образует периферические рефлекторные дуги, включающие афферентный нейрон, дендрит которого оканчивается рецептором растяжения на кардиоми-оцитах и коронарных сосудах, и эфферентный нейрон, аксон которого заканчивается на кардиомиоцитах. Внутрисердечная рефлекторная дуга может иметь вставочный нейрон. Нейроны внутри-сердечной нервной системы расположены поодиночке и собраны в ганглии. Основная масса их находится в непосредственной близости от сино-атриального и атрио-вентрикулярного узлов. Они вместе с эфферентными волокнами образуют внутрисердечные нервные сплетения. Большинство нервных волокон проходит в межпредсерд-ной перегородке. Внутрисердечная нервная система при высоком давлении в аорте угнетает сердечную, при низком - стимулирует, т. е. она стабилизирует давление в артериальной системе, предупреждает резкие колебания давления в аорте. ^ - ослабление или увеличение силы сокращений сердца за счет изменения интенсивности функционирования кардиомиоцитов при исключении влияния на них экстра- и интраорганной нервной системы, а также гуморальных факторов. Различают гетеро- и гомеометрический миоген-ные механизмы регуляции деятельности сердца. Это регуляция на уровне клеток. Гетерометрический миогенный механизм регуляции силы сокращений сердца открыл О. Франк (1895) - он обнаружил, что предварительное растяжение полоски сердечной мышцы увеличивает силу ее сокращения. Позднее Э. Старлинг (1918) провел подобные исследования на сердечно-легочном препарате. Растяжение должно быть умеренным, обеспечивающим максимальное число зон сцепления с помощью миозиновых мостиков нитей актина и миозина. Увеличению силы сокращений сердца при увеличении растяжения его стенок способствуют и дополнительный выход Са2+ из сарко-плазматического ретикулума, а также эластические растянутые элементы. Кальций увеличивает число миозиновых мостиков, взаимодействующих с нитями актина. Значение механизма Франка -Старлинга заключается в усилении сердечной деятельности в случае увеличения притока крови к сердцу (преднагрузка). Гомеометрический миогенный механизм - увеличение силы сокращений без предварительного растяжения миокарда - наблюдается при возрастании частоты сердцебиений (ритмо-инотропная зависимость). Эта зависимость проявляется и на изолированной полоске миокарда. Если постепенно увеличивать частоту раздражений, то одновременно с увеличением частоты сокращений полоски миокарда возрастает и сила сокращений. Увеличение силы 194 195 сокращений сердца с возрастанием ЧСС объясняется накоплением Са2+ в цитоплазме кардиомиоцитов - их больше выделяется из сар-коплазматического ретикулума и больше входит из межклеточных пространств. Кальциевая помпа не успевает перекачивать ионы обратно. Ионы Са2+, как известно, обеспечивают взаимодействие нитей актина и миозина при возбуждении мышечного волокна. ^ Различные биологически активные вещества (гормоны, пептиды, медиаторы) и метаболиты оказывают разнонаправленное влияние на силу и ЧСС. Гормоны. Кортикоиды, ангиотензин, серотонин, адреналин, норадреналин, вазопрессин, глюкагон увеличивают силу сокращений сердца. Тироксин увеличивает ЧСС, чувствительность сердца к симпатическим воздействиям. При эмоциональном возбуждении и физической нагрузке вследствие активации симпато-адреналовой системы количество катехоламинов в крови возрастает, сила и ЧСС увеличиваются. Механизм действия разных гормонов на сердце различен. Однако многие из них свое влияние реализуют посредством активации аденилатциклазы, которая находится на внутренней стороне клеточной мембраны. Аденилатциклаза ускоряет образование циклического аденозинмонофосфата (цАМФ) из молекул АТФ. Под действием цАМФ происходит ряд биохимических превращений. ^ циркулирующих в крови, в обеспечение регуляторных приспособительных реакций сердца незначителен. Некоторые из них, например ацетилхолин, быстро разрушаются. Норадреналин и адреналин выбрасываются в кровь не только симпатическими окончаниями, но и хромаффинными клетками. В сердце они действуют на р-рецепторы и стимулируют его деятельность (значение а-адренорецепторов дискутируется). Метаболиты оказывают как стимулирующее, так и угнетающее влияние на деятельность сердца. Снижение концентрации калия вне клетки ниже нормы (4 ммоль/л) приводит, главным образом, к повышению активности пейсмекера, при этом активизируются также гетеротропные очаги возбуждения, что может сопровождаться нарушениями ритма. Са2+ усиливает сердечные сокращения, улучшает электромеханическое сопряжение, активирует фосфорилазу, что способствует освобождению энергии. Ионы НС03~ угнетают сердечную деятельность. Снижение рН и уменьшение 02 угнетают, а повышение рН усиливает сердечную деятельность. Повышение температуры увеличивает, а понижение снижает ЧСС. Закисление среды возбуждает симпатические центры. Стимулирует сердечную деятельность эндетелин (пептид эн-дотелиоцитов). 196 ^ Кора большого мозга может оказывать разнонаправленные влияния на работу любого внутреннего органа. Наиболее ярко это проявляется на деятельности сердца. Кора реализует свое влияние посредством вегетативной нервной системы и эндокринных желез. Эмоциональное возбуждение сопровождается учащением сердцебиений. Отрицательная эмоция может сопровождаться спазмом коронарных сосудов и болевыми ощущениями. Напротив, положительные эмоции оказывают благоприятное влияние на сердце. 8.6. ГЕМОДИНАМИКА Гемодинамика - это учение о движении крови в сердечно-сосудистой системе. Движущей силой, обеспечивающей кровоток, является разность кровяного давления между проксимальным (Р^ и дисталь-ным (Р2) участками сосудистого русла. Давление крови создается работой сердца и зависит от сопротивления току крови. Последнее определяется просветом сосудов и их длиной, а также вязкостью и количеством крови в сосудах. Таким образом, объем крови (О), протекающей через сосуд, прямо пропорционален разности давлений крови в начальном и конечном отделах сосуда и обратно пропорционален сопротивлению (К) току крови:Количество крови, протекающее через все сосуды организма ![]() где Ь - длина сосуда, I*- ![]() Функциональная классификация сосудов Функциональная классификация сосудов (по Б. И. Ткаченко в модификации В. Г. Афанасьева) состоит из: 1. Амортизирующие сосуды — аорта, легочная артерия и их крупные ветви, т.е. сосуды эластического типа. Специфическая функция этих сосудов - поддержание движущей силы кровотока в диастолу желудочков сердца. Здесь сгла- 197 живается перепад давления между систолой, диастолой и покоем желудочков за счет эластических свойств стенки сосудов. В результате в период покоя давление в аорте поддерживается на уровне 80 мм рт. ст., что стабилизирует движущую силу, при этом эластические волокна стенок сосудов отдают накопленную во время систолы потенциальную энергию сердца и обеспечивают непрерывность тока крови и давление по ходу сосудистого русла. Эластичность аорты и легочной артерии смягчает также гидравлический удар крови во время систолы желудочков. Изгиб аорты повышает эффективность перемешивания крови (основное перемешивание, создание однородности транспортной среды происходит в сердце).
198
, печиваются региональный отток крови, возврат ее к сердцу. Емкость этого отдела венозного русла составляет около 18% и в физиологических условиях изменяется мало (на величину менее 1/5 от исходной емкости). ![]() ^ А. Энергия, обеспечивающая движение крови по сосудам, создается сердцем. В ^результате постоянного циклического выброса крови в аорту создается и поддерживается высокое гидростатическое давление (в сосудах большого круга кровообращения 130/ 70 мм рт. ст.), которое является причиной движения крови. Весьма важным вспомогательным фактором движения крови по артериям является эластичность их, которая формирует ряд преимуществ. 1. ^ и, естественно, расход энергии на обеспечение движения крови, что особенно важно для большого круга кровообращения. Это достигается, во-первых, за счет того, что сердце не преодолевает инерционность столба жидкости и одномоментно силы трения по всему сосудистому руслу, поскольку очередная порция крови, выбрасываемая левым желудочком во 199 время систолы, размещается в начальном отделе аорты за счет ее поперечного расширения (выбухания). Во-вторых, при этом значительная часть энергии сокращения сердца не «теряется», а переходит в потенциальную энергию эластической тяги аорты. Эластическая тяга сжимает аорту и продвигает кровь дальше от сердца во время его отдыха и наполнения камер сердца очередной порцией крови, что происходит после выброса каждой порции крови.
Однако кровоток в артериальной системе имеет пульсирующий характер, поскольку кровь выбрасывается сердцем в аорту отдельными порциями. Сразу же после изгнания кровь в аорте не движется, а в период протодиастолы до закрытия аортальных клапанов наблюдается обратный ток крови. Пульсирующий характер кровотока в большом круге кровообращения сохраняется только до арте-риол, а в малом круге кровообращения он сохраняется и в капиллярах. Линейная скорость кровотока в разных отделах сосудистого русла вариабельна (см. рис. 8.12, показана средняя скорость). ^ в ритме деятельности сердца. Различают систолическое артериальное давление (Рс=110-140 мм рт.ст.), диасто-лическое (Рд=60-90), пульсовое давление - разница между систолическим и диастолическим давлением (Рп=30-60) и среднее артериальное давление (Р =80-100). Рср - это"такое непульсирующее давление, которое обеспечивает такое же движение крови, как и данное пульсирующее. В центральных артериях его вычисляют по формуле: Рср = Рд+1/ЗРп. ^ прямым и непрямым способами. Непрямые методы разработаны Рива-Роччи и Коротковым. В настоящее время используют автоматические или полуавтоматические методы измерения АД, основанные на методе Короткова; для диагностических целей применяют мониторирование АД с автоматической регистрацией его величины до 500 раз в сутки. В эксперименте артериальное давление измеряют косвенным и прямым способами. В последнем случае в артерию вставляют канюлю, заполненную физиологическим раствором, и соединяют ее с манометром. Величину АД при этом наблюдают или регистрируют на приборе. 200 ![]() В. Артериальный пульс доступен для пальпаторного исследования (прощупывания) в местах, где артерия располагается близко к поверхности кожи, а под ней находится костная ткань. По артериальному пульсу Можно получить предварительное представление о функциональном состоянии сердечно-сосудистой системы. Так, частота пульса характеризует ЧСС. Редкий пульс (менее 60 в мин) соответствует брадикардии, частый (более 90 в мин) - тахикардии. Ритм пульса (пульс ритмичный, аритмичный) дает представление о водителях ритма сердца. В норме чаще выявляется «дыхательная аритмия» сердца; другие виды аритмий (экстрасистолия, мерцательная аритмия) более точно определяются с помощью ЭКГ. В клинической практике оценивают также высоту, скорость, напряжение пульса и его симметричность на обеих руках (ногах). На кривой регистрации пульса - сфигмограмме (рис. 8.13) - отражаются 201 ![]() повышение давления в артериях во время систолы желудочка -анакрота, снижение давления при расслаблении желудочков -катакрота и небольшое увеличение давления под влиянием отраженного удара гидравлической волны о замкнутые полулунные клапаны - дикротический подъем (дикрота). Артериальный пульс отражает пульсовые колебания кровяного давления. Скорость распространения пульсовой волны больше скорости кровотока и зависит в основном от жесткости артерии, которая увеличивается с возрастом (атеросклероз, преобладание коллагеновых волокон). В норме у взрослых людей скорость распространения пульсовой волны в сосудах эластического типа равна 5-8 м/с, в сосудах мышечного типа - 6-10 м/с, что значительно превышает скорость движения крови (см. рис. 8.12). ^ Главной движущей силой крови в капиллярах, как и в любом отделе сосудистого русла, является разность кровяного давления -в артериальном конце капилляра оно составляет 30 мм рт.ст., в венозном - 15 мм рт.ст. Вспомогательным движущим фактором является сократительная деятельность скелетной мускулатуры -кровь выжимается в сторону меньшего давления - венул. Давление крови в капиллярах измеряют прямым и косвенным методами (подбор веса грузика, который прекращает движение эритроцитов в капилляре). При этом за движением эритроцитов в поверхностных капиллярах наблюдают с помощью микроскопа. Скорость движения крови в капиллярах также определяют с помощью микроскопа и снятия на кинопленку (см. табл. 8.2). Среднее время прохождения эритроцита через капилляр большого круга кровообращения составляет у человека 2,5 с, в малом круге -0,3-1 с. ^ между кровью и межклеточной (интерстициальной) жидкостью. Кровь 202 I доставляет клеткам организма питательные вещества и 02, а уносит от них метаболиты, в том числе и С02. Газы и электролиты быстро диффундируют через стенку капилляра, и уже в первой его половине (артериальный конец) наблюдается диффузионное равновесие. Особо важную роль в транспорте воды и содержащихся веществ имеет фильтрационное давление в артериальном конце капилляра (ФД), которое определяется по формуле: ФД = ГДкр + ОДтк - ОДкр = 30+ 5 - 25 = 10 (мм рт.ст.). Способствуют фильтрации гидростатическое давление крови (ГД = 30 мм рт.ст.) и онкотическое давление тканевой жидкости (ОДР = 5 мм рт.ст.). Препятствует фильтрации онкотическое давление плазмы крови (ОД = 25 мм рт.ст.). Гидростатическое давление в интерстиции колеблется около нуля, т.е. 760 мм рт.ст., поэтому оно не учитывается. В венозном конце капилляра ГДкр снижается до 15 мм рт.ст., поэтому силы, способствующие фильтрации, становятся меньше сил, противодействующих фильтрации, в результате чего формируется реабсорбционное давление (РД), обеспечивающее переход жидкости в венозном конце из интерстиция в капилляры: РД = ОДкр - ГДкр - ОДтк = 25 - 15 - 5 = 5 (мм рт.ст.). Реабсорбируется из интерстиция жидкости несколько меньше, нежели фильтруется, часть профильтровавшейся жидкости переходит в лимфатическую систему. ^ А. Основная движущая сила крови по венам - разность давлений в начальном и конечном отделах вен, создаваемая работой сердца. Давление в посткапиллярных венулах равно 10-20 мм рт.ст., в полых венах вблизи сердца оно колеблется в соответствии с фазами дыхания от +5 до -5 мм рт.ст., следовательно, движущая сила (ДР) составляет в венах около 10-20 мм рт.ст., что в 5-10 раз меньше движущей силы в артериальном русле. При кашле и нату-живании центральное венозное давление может возрастать до 100 мм рт.ст., что препятствует движению венозной крови с периферии. Давление в других крупных венах также имеет пульсирующий характер, но волны давления распространяются по ним ретроградно - от устья полых вен к периферии. Б. Для движения крови по венам очень важное значение $ имеют вспомогательные факторы. 1. Сокращение скелетных мышц (мышечный насос) и венозные клапаны. При сокращении мышц сдавливаются вены, что обес- 203 печивает движение крови только в одном направлении - к сердцу, так как обратному току крови препятствуют венозные клапаны. Сократительная деятельность скелетных мышц усиливает также отток лимфы по лимфатической системе.
^ в венах, как и в других отделах сосудистого русла, зависит от суммарной площади поперечного сечения, поэтому она наименьшая в венулах (0,3-1,0 см/с), наибольшая - в полых венах (10-25 см/с). ^ Основные параметры кровотока в малом круге кровообращения существенно отличаются от таковых большого круга кровообращения. Систолическое давление в легочной артерии составляет всего лишь 20-25 мм рт.ст., диастолическое - около 10 мм рт.ст., среднее давление - 13-15 мм рт.ст. Низкое АД объясняется широким просветом сосудов, меньшей длиной и их высокой растяжимостью. Благодаря перечисленным факторам в малом круге кровообраще- ния низкое сопротивление току крови. Давление крови в капиллярах легких равно 6-7 мм рт.ст., время пребывания эритроцита в капилляре - 0,3-1 с. Вследствие низкого сопротивления току крови в малом круге кровообращения и высокой растяжимости сосудов минутный объем кровотока может возрасти в 3-4 раза без существенного повышения среднего давления. ^ Объем крови, протекающей через любой орган, зависит от системного артериального давления - АД (чем больше давление, тем больше кровоток), но еще больше кровоток зависит от просвета сосудов в органе (чем шире их просвет, тем больше кровоток). Тонус сосудов (их сопротивление току крови) регулируется с помощью нервного, миогенного и гуморального механизмов. ^ А. Сосудодвигательные центры находятся в спинном мозге (сегментарно, С8 - Ь3), в продолговатом мозге - центр кровообращения, в гипоталамусе, в коре большого мозга. Корковые влияния на сосуды осуществляются, как и на все другие органы и ткани, с помощью запуска нервных и гормональных регуляторных механизмов. Наиболее сильное влияние на просвет сосудов (констриктор-ное и дилататорное) оказывают моторная и премоторная зоны. Вспомогательную роль выполняют корковые нейроны медиальной поверхности полушарий, лобной и теменной долей. Особое значение в приспособительной деятельности организма имеет тот факт, что запуску деятельности скелетной мышцы предшествует расширение ее сосудов - сигналы из коры большого мозга раньше приходят к сосудам (при планировании действия) и вызывают их расширение, а затем поступают импульсы к скелетным мышцам, активирующие сократительную их деятельность. Иннервация сосудов осуществляется в основном с помощью симпатического отдела вегетативной нервной системы, активация которого ведет к сужению сосудов, и лишь незначительную роль играет парасимпатический отдел, снижающий тонус сосудов некоторых органов. Симпатическую иннервацию получают все отделы сосудистой системы, кроме капилляров. ^ Раздражение симпатических волокон вызывает значительное сужение сосудов кожи, мышц, органов брюшной полости, жировой ткани. Слабее эффект выражен в со- 204 205 судах сердца, легких и мозга, что объясняется, по-видимому, не только малым числом иннервированных а,-рецепторов, но и, возможно, меньшей плотностью симпатической иннервации сосудов. Возбуждение симпатических нервов вызывает сужение артериол примерно на 1 /3, а вен - на 1 /6. Блокада или перерезка симпатических сосудосуживателеи может увеличить объем крови в органах на 20%. Вазоконстрикторное и стимулирующее сердце влияния симпатической нервной системы сильнее действия катехоламинов надпочечников. Частота импульсов, идущих по симпатическим нервам к сосудам, составляет 1-3 имп/с. ^ Кровеносные сосуды богато снабжены постсинаптическими а-адренорецепторами с преобладанием а-адренорецепторов, т.е. иннервированных. Плотность р-рецепторов невысока. Таким образом, возбуждение симпатической нервной системы вызывает сильную вазоконстрикцию в сосудах всего организма, кроме сердца, мозга и легких. Значение слабой вазоконстрикции этих органов очевидно - сохранение достаточного кровоснабжения в жизненно важных органах при эмоциональном и физическом напряжениях. ^ (расширение кровеносных сосудов) осуществляется с помощью различных нервов.
и активации $-адренорецепторов, например, в мелких пиальных сосудах мозга, в мелких сосудах сердца (в скелетных мышцах -спорно). В скелетных мышцах В-адренорецепторы локализуются в основном в микрососудах. В коронарных сосудах, как и во всех органах, присутствуют а- и р-рецепторы, но число последних становится преобладающим по мере удаления от проксимальных отделов. Поэтому мелкие сосуды сердца при возбуждении симпато-адрена-ловой системы расширяются, а более крупные суживаются, что может привести к ухудшению кровоснабжения миокарда. 6. ^ Языкоглоточный нерв расширяет сосуды миндалин, околоушной железы, задней трети языка. Верхнегортанный нерв расширяет сосуды гортани и щитовидной железы. Язычный нерв расширяет сосуды языка. Сосудорасширяющие парасимпатические холи-нергические волокна имеются в составе тазового нерва. Они активируются при половом возбуждении, вызывают выраженное расширение сосудов половых органов и увеличение кровотока в них. Холинергические сосудорасширяющие волокна иннервируют также мелкие артерии мягкой мозговой оболочки головного мозга. Есть данные, свидетельствующие о том, что активация волокон блуждающего нерва ведет к расширению коронарных сосудов. Вазодилатация органов брюшной полости с помощью парасимпатических волокон блуждающего нерва не доказана. Миогенная и гуморальная регуляция тонуса сосудов ^ сосудистого тонуса осуществляется благодаря спонтанной сократительной активности гладкомышеч-ных клеток сосудистой стенки. Как известно, гладкомышечные клетки могут спонтанно, без действия нервной системы и гуморальных факторов периодически возбуждаться. Этим свойством обладают клетки-пейсмекеры. Возбуждение передается другим клеткам, которые, в свою очередь, сокращаются, что и обеспечивает наличие постоянного тонического сокращения гладкомышечных клеток и наличие тонуса даже полностью денервированного сосуда (миоген-ный тонус). Тонус сосуда определяется также растянутыми эластиновыми и коллагеновыми волокнами - эластический тонус. Совокупность миогенного и эластического тонусов - это базальный (основной) тонус сосудов. Он составляет 50-60% от общего тонуса сосудов в физиологических (естественных) условиях. Кроме того, в органах (особенно в почке и головном мозге) имеется миогенный ауторегуляторный механизм стабилизации 206 207 ![]() объемной скорости кровотока при колебаниях АД - он заключается в том, что при повышении системного АД тонус приносящих сосудов органа также возрастает, а при падении системного АД тонус этих сосудов снижается (эффект Остроумова - Бейлисса). Это обеспечивает сравнительно постоянный кровоток через орган. Подобный механизм в меньшей степени выражен в сердце, печени, кишечнике и скелетных мышцах (органы расположены по убыванию степени выраженности описанного эффекта). ^ тонуса сосудов осуществляется биологически активными веществами и продуктами метаболизма. Одни вещества расширяют, другие суживают кровеносные сосуды, некоторые оказывают двоякое действие. ^ 209 Адреналин активирует а- и р-адренорецепторы. Поскольку при активации а-адренорецепторов сосуды суживаются, а при активации (3-адренорецепторов сосуды расширяются, можно было ожидать, что в случае преобладания а-рецепторов в сосудах они будут суживаться под влиянием адреналина, а в случае преобладания р-адренорецепторов расширяться. Вместе с тем реакция сосудов кожи, мышц, органов брюшной полости зависит от концентрации адреналина. В низких концентрациях адреналин вызывает расширение сосудов этих органов, в высоких - сужение сосудов (рис. 8.14). Это объясняется тем, что чувствительность р-рецепто-ров выше, чем а-рецепторов, поэтому физиологические концентрации адреналина активируют только р-рецепторы, что и ведет к расширению сосудов. По-видимому, эндогенный адреналин всегда или в подавляющем большинстве случаев вызывает расширение всех сосудов организма (покраснение лица при эмоциях). Только при сильном эмоциональном напряжении (побледнение лица), крово-потере концентрация адреналина в крови может повыситься настолько, что преобладающим эффектом станет сужение сосудов вследствие одновременной активация |3- и ос-рецепторов. Преобладающий вазоконстрикторныи эффект в этом случае, как и при экзогенном введении больших доз адреналина, объясняется тем, что а-адренорецепторов в различных сосудах организма больше, нежели (3-рецепторов. Серотонин (5-гидрокситриптамин), выделяющийся преимущественно из энтерохромаффинных клеток, в стволе мозга, при разрушении кровяных пластинок, также обладает двояким действием. Вазоконстрикция особенно важна для прекращения кровотечения при повреждении сосудов. Двоякое влияние серотонина на сосуды заключается в том, что при высоком тонусе сосудов серотонин вызывает расширение их, а при низком - сужение. Механизм двоякого влияния серотонина изучен недостаточно. ^ играют важную роль в регуляции сосудистого тонуса. Всю массу эндо-телиоцитов (около 500 г в организме человека) рассматривают как эндокринную железу. Эндотелий вырабатывает сосудосуживающие и сосудорасширяющие вещества, они очень быстро разру-* шаются (период полураспада - 10-20 с). Одним из веществ, вызывающих расширение кровеносных сосудов, в том числе и коронарных, является оксид азота (N0). N0 синтезируется из 1-аргинина, обеспечивает уменьшение тонуса сосудов примерно на 30%, при гипоксии активность его увеличивается, сосуды расширяются. При этом N0 отделяется и от НЬ. При гипероксии активность N0 падает, сосуды суживаются. Сосудорасширяющее действие С02 также реализуется с помощью N0: блокада ЫО-синтетазы устраняет сосудорасширяющий эффект С02. Выделяемые эндотелием вещества участвуют в стабилизации системного АД. Примером веществ, обладающих сосудосуживающим действием, может быть эндотелии - вазоконстрикторныи пептид, выделенный из эндотелиоцитов свиньи и состоящий из 21 аминокислотного остатка. Полагают, что нарушение функций эндотелиоцитов может быть одним из факторов развития гипертонической болезни и облитерирующего эндартериита. Следует отметить, что венулы и вены в 20-30 раз более чувствительны к медиаторам и биологически активным веществам -адреналину, кальцитонину, кортизолу. Это объясняется тем, что такие сосуды обладают большим диаметром и слабой фоновой активностью миоцитов (Б. И. Ткаченко). ^ Факторы, влияющие на АД: 1) работа сердца, 2) просвет сосудов, 3) объем циркулирующей крови (ОЦК) и 4) вязкость крови (при неизменной длине сосудов). Скорость изменения этих факторов различна. Работа сердца и просвет сосудов с помощью ' вегетативной нервной системы изменяются очень быстро - через несколько секунд. Гормональные влияния осуществляются медленнее. Исключение составляют адреналин и норадреналин, вырабатываемые мозговым слоем надпочечников. Количество крови в организме и ее вязкость изменяются еще медленнее. Естественно, чем больше ОЦК, тем больше АД (ОЦК определят величину среднего давления наполнения - давления в различных отделах сосудистого русла, которое устанавливается, когда сердце не работает). ^ Центр кровообращения - это совокупность нейронов, расположенных в различных отделах ЦНС и обеспечивающих приспособительные реакции сердечно-сосудистой системы в различных условиях жизнедеятельности организма. Локализация центра кровообращения была установлена с помощью метода перерезок и раздражения. Главная часть центра кровообращения, как и центра дыхания, находится в продолговатом мозге. Нейроны, регулирующие деятельность сердца и просвет сосудов, расположены также в среднем и спинном мозге, гипоталамусе, в коре большого мозга. В спинном мозге совокупность симпатических нейронов, расположенных сегментарно в боковых рогах, представляет собой конечное звено ЦНС, обеспечивающее передачу сигналов к эффекторам. Нейроны, регулирующие деятельность сердца, находятся в верхних грудных сегментах (ТЬ1-ТЬ5), регулирующие тонус сосудов - в торако-люмба^льных сегментах (С8-Ь3). Эти нейроны сохраняют самостоятельную активность и после перерезки спинного мозга в области нижних шейных или верхних грудных сегментов. Причем их импульсная активность приурочена к ритму сердца и колебаниям АД. В продолговатом мозге находятся центры блуждающих нервов, иннервирующих сердце, и симпатическая часть центра кровообращения (сердечно-сосудистого центра), представляющая собой скопление нейронов ретикулярной формации. Взаимоотношения нейронов симпатического центра значительно сложнее, чем парасимпатического. 210 211 ![]() ^ причем нейроны депрессорного отдела оказывают тормозное влияние на нейроны прессорной части центра кровообращения (рис. 8.15), а их зоны расположения перекрывают друг друга. ^ депрессорные нейроны активируются афферентными импульсами от сосудистых барорецепторов (рецепторов растяжения, рис. 8.15 - 1), а прессорные нейроны активируются афферентной импульсацией от сосудистых хеморецеп-торов и от экстерорецепторов (рис. 8.15 - 2). Аксоны прессорных нейронов продолговатого мозга посылают импульсы к симпатическим нейронам спинного мозга, иннервирующим и сердце (ТЬ1 - Тп5), и сосуды (С8 - Ц). Медиатором прессорных и депрессорных нейронов продолговатого мозга является норадреналин. Медиатором пре- ! ганглионарных симпатических нервных волокон, выходящих из спинного мозга, является ацетилхолин. Прессорный отдел центра кровообращения находится в состоянии тонуса - в симпатических нервах постоянно идут нервные импульсы с частотой 1- 3 в 1 с, при возбуждении - до 15 в 1 с. Именно поэтому при перерезке симпатических нервов сосуды расширяются. Активность бульбарного отдела центра кровообращения регулируется гипоталамусом и корой большого мозга. Гипоталамус, как и продолговатый мозг, содержит прессорные и депрессорные зоны, нейроны которых посылают аксоны к соответствующим центрам продолговатого мозга и регулируют их активность. На уровне гипоталамуса (промежуточный мозг) происходит интеграция соматических и вегетативных влияний нервной системы на организм - изменения соматической деятельности обеспечиваются соответствующими изменениями деятельности сердечно-сосудистой системы. Например, при физической нагрузке работа сердца увеличивается, происходит перераспределение крови в организме за счет сужения одних сосудов (кожи, пищеварительной системы) и расширения других (мышц, мозга, сердца), что ведет к увеличению кровотока в них, доставки кислорода, питательных веществ и удалению продуктов обмена. Влияние коры большого мозга на системное АД. Особенно сильное влияние на кровообращение оказывают моторная и премо-торная зоны. Кора большого мозга реализует свое влияние на сердечно-сосудистую систему в обеспечении приспособительных реакций организма с помощью вегетативной нервной системы (условных, безусловных рефлексов) и гормональных механизмов (см. раздел 10.10). Таким образом, кора большого мозга и промежуточный мозг оказывают модулирующее влияние на бульбарный 212 213 ![]() отдел центра кровообращения, а при физической нагрузке и эмоциональном возбуждении влияние вышележащих отделов ЦНС сильно возрастает - наблюдается значительная стимуляция деятельности сердечно-сосудистой системы. ^ и длительности действия все механизмы поддержания АД можно объединить в три группы: 1) механизмы быстрого реагирования; 2) механизмы небыстрого реагирования (средние по скорости включения и продолжительности действия); 3) механизмы медленного реагирования и длительного действия. ^ Механизмы быстрого реагирования - это рефлекторная регуляция АД с помощью изменений работы сердца и тонуса (просве1 та) сосудов. Эти реакции срабатывают в течение нескольких секунд. Причем, в случае повышения АД работа сердца тормозится, тонус сосудов уменьшается - они расширяются. И то, и другое ведет к снижению (нормализации) АД. Если же давление снижается, то деятельность сердца увеличивается, а сосуды сужаются, что ведет к увеличению - нормализации АД. Включаются в реакцию и емкостные сосуды. В случае повышения АД тонус емкостных сосудов уменьшается, что ведет к задержке крови в венах, уменьшению притока крови к сердцу и уменьшению выброса крови сердцем. В случае снижения АД тонус емкостных сосудов возрастает, что ведет к увеличению возврата крови к сердцу и возрастанию выброса сердцем крови. Рецепторы, воспринимающие изменения кровяного давления, барорецепторы (точнее, рецепторы растяжения) рассеяны по всему кровеносному руслу, но имеются их скопления: в дуге аорты и в области каротидного синуса (главные сосудистые рефлексогенные зоны), в сердце (предсердиях, желудочках, коронарных сосудах), легком, в стенках крупных грудных и шейных артерий. В перечисленных участках имеются многочисленные барорецепторы, а в дуге аорты и каротидном синусе - баро- и хеморецепторы. Хотя принцип работы рефлексогенных зон одинаков, их значение в регуляции АД несколько различается. Главные сосудистые рефлексогенные зоны расположены в начале напорного сосуда (дуга аорты) и в области каротидного синуса (участок, через который кровь течет в мозг) - эти зоны обеспечивают слежение за системным АД и снабжением кровью мозга. Отклонение параметров кровяного давления в области этих рефлексогенных зон означает изменение АД во всем организме, что воспринимается барорецепторами, и центр кровообращения вносит 214 соответствующие коррекции. Чувствительные волокна от бароре-цепторов каротидного синуса идут в составе синокаротидного нерва (нерв Геринга - ветвь языкоглоточного нерва, IX пара черепных нервов). Барорецепторы дуги аорты иннервируются левым депрессорным (аортальным) нервом, открытым И. Ционом и К. Людвигом. При снижении АД барорецепторы рефлексогенных зон возбуждаются меньше. Это означает, что меньше поступает импульсов от дуги аорты и синокаротидной области в центр кровообращения. В результате нейроны блуждающего нерва меньше возбуждаются, и к сердцу по эфферентным волокнам поступает меньше импульсов, тормозящих работу сердца, поэтому частота и сила его сокращений возрастают (рис. 8.16 - А). Одновременно меньше импульсов поступает к депрессорным нейронам симпатического отдела центра кровообращения в продолговатом мозге (см. рис. 8.15), вследствие этого его возбуждение ослабевает, меньше угнетаются прес-сорные нейроны, а значит, они посылают больше импульсов к сердечным (Тг^-Тг^) и сосудистым (С8-Ь3) симпатическим центрам спинного мозга. Это ведет к дополнительному усилению сердечной деятельности и сужению кровеносных сосудов (рис. 8.17). Суживаются при этом венулы и мелкие вены, что увеличивает возврат крови к сердцу и ведет к усилению его деятельности. В результате согласованной деятельности симпатического и парасимпатического отделов центра кровообращения АД повышается (нормализуется). 215 При повышении АД увеличивается импульсация от барорецеп-торов в центр кровообращения, что оказывает депрессорное дей- ![]() ствие — снижение АД. Снижение повышенного АД до уровня нормы осуществляется с помощью увеличения поступления числа импульсов от рефлексогенных зон в центр кровообращения. Усиление возбуждения нейронов блуждающего нерва (увеличение его тонуса) ведет к угнетению сердечной деятельности (см. рис. 8.16-Б), а усиление возбуждения депрессорной части симпатического центра ведет к большему угнетению прессорного отдела симпатического центра и к расширению резистивных и емкостных сосудов организма. В результате угнетения работы сердца и расширения сосудов давление понижается. Оно дополнительно уменьшается еще и потому, что задержка крови в расширенных емкостных сосудах ведет к уменьшению поступления крови к сердцу и, естественно, к уменьшению систолического выброса крови. ^ аортальной и синокаротидной рефлексогенных зон возникает при уменьшении напряжения 02 увеличении напряжения С02 и концентрации водородных ионов, т.е. при гипоксии, гиперкапнии и ацидозе. Импульсы от хеморецепторов поступают по тем же нервам, что и от барорецепторов, в продолговатый мозг, но непосредственно к нейронам прессорного отдела симпатического центра, возбуждение которого вызывает сужение сосудов, усиление и ускорение сердечных сокращений и, как следствие, повышение АД. В результате кровь быстрее поступает к лег- 216 ким, углекислый газ обменивается на кислород. Хеморецепторы имеются и в других сосудистых областях (селезенка, почки, мозг). Изменения деятельности сердечно-сосудистой системы способствуют устранению отклонений от нормы газового состава крови. Однако эффект невелик, так как увеличение АД осуществляется, главным образом, за счет сужения сосудов и лишь частично - в результате стимуляции деятельности сердца. Примерно так же функционируют сердечные и легочная рефлексогенные зоны. Барорецепторы (механорецепторы) последней локализуются в артериях малого круга кровообращения. Повышение давления в сосудах легких закономерно ведет к урежению сокращений сердца, к падению АД в большом круге кровообращения и увеличению кровонаполнения селезенки (рефлекс В. В. Па-рина). Попадание в сосуды легких (в патологических случаях) пузырьков воздуха, жировых эмболов, вызывающих раздражение механорецепторов сосудов малого круга кровообращения, вызывает настолько сильное угнетение сердечной деятельности, что может привести к летальному исходу - нормальная физиологическая реакция переходит, в случае чрезмерного ее проявления, в патологическую. ^ А. Механизмы небыстрого реагирования — это средние по скорости развития реакции (минуты - десятки минут), участвующие в регуляции АД. Они включают четыре основных механизма.
217 ![]() кровь сгущается и содержит до 20% эритроцитов всей крови организма. Кровь из депо может мобилизоваться и включаться в общий кровоток в течение нескольких минут. Это происходит при возбуждении симпато-адреналовой системы, например, при физическом и эмоциональном напряжении, при кровопотере.
218 Б. Механизмы медленного реагирования - это регуляция системного АД с помощью изменения количества выводимой из организма воды. При увеличении количества воды, в организме, несмотря на переход части ее из кровеносного русла в ткани, АД возрастает по двум причинам: 1) из-за непосредственного влияния количества жидкости в сосудах - чем больше крови, тем больше давление в сосудах - возрастает давление наполнения; 2) при накоплении жидкости в кровеносном русле возрастает наполнение емкостных сосудов (венул и мелких вен), что ведет к увеличению венозного возврата крови к сердцу и, естественно, к увеличению выброса крови в артериальную систему - АД повышается. При уменьшении количества жидкости в организме АД уменьшается. Количество выводимой из организма воды определяется фильтрационным давлением в почечных клубочках и меняется с помощью гормонов.
Антидиуретический гормон (АДГ) участвует в регуляции АД посредством изменения количества выводимой из организма воды лишь в случае значительного его падения (о механизме см. в разделе 11.5). Альдостерон участвует в регуляции системного АД, во-первых, за счет повышения тонуса симпатической нервной системы и повышения возбудимости гладких мышц сосудов к вазоконстрикторным веществам и, в частности, кангиотензину, адреналину, вызывающим сужение сосудов (по-видимому, повышается активность а-адреноре-цепторов). В свою очередь, ангиотензин оказывает сильное стимулирующее влияние на выработку альдостерона: так функционирует ренин-ангиотензин-альдостероновая система. Во-вторых, альдостерон участвует в регуляции АД за счет изменения объема диуреза (см. раздел 11.5). ^ являются антагонистами альдостерона в регуляции содержания Ыа+ в организме - они способствуют выведению №+. Этим гормонам, секретирующимся в миокарде, почках, мозге, посвящено огромное количество работ, они представляют собой пептиды. Атриопептид вырабатывается кардиомиоцитами в основном в предсердиях, частично в желудочках. При увеличении растяжения предсердий продукция гормона возрастает. Это наблюдается при увеличении объема циркулирующей жидкости в организ- | ме и кровяного давления. Повышение выведения Ма+ с мочой ведет к увеличению выведения воды, уменьшению (нормализации) АД. ; Снижению АД способствует' также сосудорасширяющее действие этих гормонов, что осуществляется с помощью ингибирования Са2+-каналов сосудистых миоцитов. Атриопептид увеличивает I мочеобразование также посредством расширения сосудов почки и увеличения фильтрации в почечных клубочках. При уменьшении [ объема жидкости в кровеносном русле и снижении АД секреция I натрийуретических гормонов уменьшается. Важно отметить, что все рассмотренные механизмы регуляции АД взаимодействуют между собой, дополняя друг друга в случае I как повышения, так и понижения АД. Общая схема функциональ- I ной системы, регулирующей АД, представлена на рис. 8.19. 219 ![]() ![]() ^ Это понятие ввел в физиологию В. Н. Черниговский. Сопряженные (межсистемные) рефлексы - рефлекторные влияния на сердечно-сосудистую систему с рефлексогенных зон других органов или с сердечно-сосудистой системы на другие системы организма. Они не принимают прямого участия в регуляции системного АД. Примером сопряженных рефлексов могут служить следующие рефлексы. Рефлекс Данини - Ашнера (глазо-сердечный рефлекс) - это снижение частоты сердечных сокращений (ЧСС), возникающее при надавливании на боковую поверхность глаз. Рефлекс Гольца - уменьшение ЧСС или даже полная остановка сердца при раздражении механорецепторов органов брюшной полости или брюшины, что учитывается при хирургических вмешательствах в брюшной полости. В опыте Гольца поколачивание по желудку и кишечнику лягушки ведет к остановке сердца. Рефлекс Тома — Ру - брадикардия при сильном давлении или ударе в эпигастральную область. Удар «под ложечку» (ниже мечевидного отростка грудины - область солнечного сплетения) у человека может привести к остановке сердца, кратковременной потере сознания и даже к смерти. У боксеров такой удар является запрещенным. Рефлексы Гольца и Тома - Ру осуществляются с помощью блуждающего нерва и, по-видимому, имеют общую рефлексогенную зону. 220 Рефлекс с механо- и терморецепторов кожи при их раздражении заключается в торможении или стимуляции сердечной деятельности. Степень их выраженности может быть весьма сильной. Известны, например, случаи летального исхода вследствие остановки сердца при нырянии в холодную воду (резкое охлаждение кожи живота). Рефлекс с проприорецепторов возникает при физической нагрузке и выражается в увеличении ЧСС вследствие уменьшения : тонуса блуждающих нервов. Этот рефлекс является приспособи-[ тельным - обеспечивает улучшение снабжения работающих мышц кислородом и питательными веществами, удаление метаболитов. Условные рефлексы на изменение сердечной деятельности также относят к сопряженным рефлексам, например, предстартовое состояние, которое сопровождается ярковыраженными эмоциями и выбросом адреналина в кровь. ^ Лимфатическая система - это совокупность лимфатических сосудов и расположенных по их ходу лимфатических узлов, обеспечивающая всасывание межклеточной жидкости, веществ и возврат их в кровяное русло. Лимфатическая система поддерживает баланс различных веществ и жидкости в организме. Лимфатические сосуды начинаются капиллярами, представляющими собой обширную разветвленную сеть мелких тонкостенных сосудов, неравномерно представленную в разных участках тела ' (например, в мозге их нет, в мышцах мало). Начинается лимфатическая система с тончайших, закрытых с одного конца терминальных лимфатических капилляров. Стенки их обладают высокой проницаемостью, вместе с тканевой жидкостью внутрь легко проходят молекулы белка и другие крупные частицы. В структурно-функциональном отношении лимфатические сосуды аналогичны венам и также снабжены клапанами, препятствующими обратному току лимфы. Участки между двумя клапанами (клапанные сегменты), в последующем названные лимфангионами (АНзНп), обеспечивают насосную функцию лимфатической системы (Р. С. Орлов). Лимфатические сосуды впадают в венозную систему. В частности, грудной проток впадает в угол, образованный левыми (наружной яремной и подключичной) венами, в месте их слияния. Лимфатические узлы, располагающиеся на пути лимфатических сосудов, благодаря наличию в них гладкомышечных элементов способны сокращаться. Содержащиеся в лимфе бактерии фаго- 221 цитируются клетками лимфатических узлов. При этом в лимфатических узлах развивается воспалительный процесс, они увеличиваются в размерах, становятся болезненными. Функции лимфатической системы.
Лимфа представляет собой прозрачную жидкость слегка желтоватого цвета, солоноватого вкуса, с приторным запахом. Она состоит из лимфоплазмы и форменных элементов, в основном лимфоцитов. По химическому составу лимфоплазма близка к плазме крови. Лимфа образуется в результате фильтрации жидкости из капилляров в интерстиций, отсюда она диффундирует в лимфатические капилляры. Белки, хиломикроны и другие частицы попадают в полость лимфатического капилляра с помощью пиноцитоза. Скорость фильтрации во всех кровеносных капиллярах (кроме почечных клубочков) составляет 14 мл/мин, что составляет 20 л в сутки; скорость обратного всасывания - около 12,5 мл/мин, т. е. 18 л в сутки. Следовательно, в лимфатические капилляры попадает около 2 л в жидкости в сутки. В лимфатических сосудах взрослого человека весом 70 кг натощак содержится 2-3 л лимфы. Непосредственной движущей силой лимфы, как и крови, в любом участке сосудистого русла является градиент гидростатического давления. Клапанный аппарат лимфатических сосудов препятствует обратному току лимфы. В работающих органах лим-фоток возрастает. Градиент гидростатического давления в лимфатической системе создается несколькими факторами. 1. Основным из них является сократительная активность лимфатических сосудов и узлов. В лимфангионе имеются мышцесодержащая часть и участок со слабым развитием мышечных элементов (область прикрепления клапанов). Для функций лимфатических сосудов характерны фазные ритмические сокращения (10-20 в мин), медленные волны (2-5 в мин) и тонус. 2. Присасывающее действие грудной клетки (как и для движения крови по венам). 3. Сокращение скелетных мышц, пульсация близлежащих крупных артериальных сосудов, повышение внутрибрюшного давления. Регуляция сократительной активности лимфангионов осуществляется с помощью нервного, гуморального и миогенного механизмов. Миогенная регуляция лимфангионов осуществляется благодаря автоматии гладких мышц, при этом увеличение их растяжения приводит к возрастанию силы сокращения и оказывает активирующее влияние на соседние лимфангионы. Нервная регуляция сократительной деятельности лимфангионов, по данным Р. С. Орлова и сотр. (1982), осуществляется с помощью интра-мурального нервного аппарата и симпатической нервной системы, которая активирует а-адренорецепторы, что ведет к учащению фазных сокращений. Катехоламины вызывают разнонаправленные реакции лимфатических микрососудов. Эффект зависит от дозы препарата, по-видимому, по той же причине, что и в кровеносных сосудах. Холинэргические влияния неоднозначны, но, как правило, низкие концентрации ацетилхолина уменьшают частоту спонтанных фазных сокращений пейсмекеров лимфангионов. Гормональная регуляция сокращений лимфангионов изучена недостаточно. Известно, например, что вазопрессин усиливает лимфоток, оксито-цин тормозит его. |