Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon

Дубровский В. И. С50 \ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений





Скачать 7.16 Mb.
Название Дубровский В. И. С50 \ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений
страница 6/22
Дата 25.03.2013
Размер 7.16 Mb.
Тип Учебник
1   2   3   4   5   6   7   8   9   ...   22
Глава 6 СИСТЕМА КРОВИ

Система крови - это совокупность органов кроветворения, пе­риферической крови, органов кроверазрушения и нейрогумораль-ного аппарата регуляции (Г. Ф. Ланг).

^ 6.1. КРОВЬ КАК ВНУТРЕННЯЯ СРЕДА ОРГАНИЗМА

Внутренняя среда организма - это совокупность жидкостей, включающая кровь, лимфу, тканевую и цереброспинальную жид­кости. Значение внутренней среды организма состоит в том, что из нее клетки получают необходимые для своей жизнедеятельности вещества, и выделяют в нее продукты обмена веществ (метаболи­ты). Она является непосредственной питательной средой для кле­ток организма,

^ А. Состав крови. Кровь - это жидкая ткань организма. Она со­стоит из плазмы (жидкая часть крови) и форменных элементов - эрит­роцитов, лейкоцитов и тромбоцитов. Плазма составляет 55-60%, форменные элементы - 40-45%. Соотношение плазмы и форменных элементов определяется при помощи прибора гематокрита. Гемато-критное число - это количество форменных элементов крови в про­центах от общего объема крови (в норме оно равно 40-45).

Плазма состоит из воды (около 90%), неорганических солей (около 1%) и органических веществ (около 9%). ^ Органические вещества плазмы включают ряд компонентов.

/. Белки - 67-75 г/л, среди них альбуминов - 37-41 г/л, гло­булинов - 30-34 г/л, фибриногена 3,0-3,3 г/л. Роль белков. 1) обеспечивают коллоидно-осмотическое (онкотическое) давление (25-30 мм рт. ст.), что удерживает воду в сосудах; 2) участвуют


126

127

в процессе свертывания крови (фибриноген и другие плазменные факторы свертывания крови); 3) регулируют рН крови (белковый буфер); 4) часть белков плазмы являются антителами (защитная функция); 5) выполняют транспортную функцию; 6) обеспечивают вязкость крови.

  1. ^ Азотсодержащие вещества плазмы небелковой природы -это промежуточные продукты обмена белка. Они составляют ос­таточный азот. Основными компонентами остаточного азота яв­ляются азот мочевины, аминокислот, мочевой кислоты. Содержа­ние остаточного азота в крови равно 14,3-28,6 мМоль/л.

  2. ^ Безазотистые органические вещества — это глюкоза (4,4-6,6 мМоль/л, или 80-120 мг%), молочная, пировиноградная кис­лоты, липиды (фосфолипиды, жирные кислоты, холестерин, леци­тин). Концентрация глюкозы в артериальной крови выше, чем в венозной, что объясняется потреблением глюкозы клетками орга­низма. Увеличение концентрации молочной кислоты в крови свя­зано в основном с усилением ее продукции в мышцах.

  3. ^ Биологически активные вещества (ферменты, витами­ны, гормоны) и газы крови (см. раздел 9.2).

Б. Количество крови составляет 5-9% от массы тела (у чело­века с массой 70 кг количество крови 4,5-6 л). В организме в со­стоянии покоя до 45-50% всей массы крови находится в кровя­ных депо (селезенке, печени, легких и подкожном сосудистом сплетении). В селезенке кровь может быть почти полностью вы­ключена из циркуляции, а в печени и сосудистом сплетении кожи кровь циркулирует в 10-20 раз медленнее, чем в других сосудах.

^ В. Функции крови.

  1. Транспортная - доставка тканям различных веществ; за счет этого выполняются функции: а) дыхательная; б) пи­тательная; в) экскреторная; г) регуляции постоянства тем­пературы тела - транспорт тепла; д) регуляторная — участие в гуморальной регуляции многих функций организма.

  2. ^ Защитная функция — участие в фагоцитозе, образова­нии антител.

Г. Физико-химические свойства крови. Кровь обладает сус­пензионными, коллоидными и электролитными свойствами. Кол­лоидные и суспензионные свойства крови определяются количе­ством белков и соотношением их различных фракций (альбумины, глобулины). Электролитные свойства крови обусловлены содержа­нием в ней солей, находящихся в диссоциированном (в виде ионов) состоянии. Например, №НС03 диссоциирует на ионы №+ и НС03~. Различные вещества крови обеспечивают осмотическое давление и буферные свойства крови.

^ Осмотическое давление крови составляет 6,6-7,6 атмосфер. Стабильно функции клеток организма могут осуществляться только при относительном постоянстве осмотического давления. Эритроциты, например, помещенные в гипотонический раствор хлорида натрия, набухают и могут даже разрушиться (гемолиз). Раствор, имеющий одинаковое осмотическое давление с кровью, называется изотоническим (0,85-0,9%-ный раствор ЫаС1). Раствор с более высоким осмотическим давлением, чем осмотическое давление крови, называется гипертоническим, а имеющий более низкое давление -гипотоническим. Часть осмотического давления, создаваемого белками, называется онкотическим давлением, оно равно 25 мм рт. ст.

^ Кислотно-основное состояние (КОС) организма является од­ним из важнейших и наиболее стабильных показателей, определя­ющих активность ферментов, интенсивность и направленность окислительно-восстановительных реакций в процессах обмена ве­ществ. Активную реакцию среды оценивают показателем рН, отра­жающим содержание в жидкостях ионов водорода. Величина рН крови составляет 7,35-7,45 - слабощелочная реакция. Более значительные изменения рН крови связаны с патологическими на­рушениями обмена веществ. КОС поддерживается буферными си­стемами крови, а регулируется с помощью легких, желудочно-кишечного тракта, почек (см. разделы 9.2, 13.6). Буферной системой называют смеси, которые обладают способностью пре­пятствовать изменению рН среды при внесении в нее оснований или кислот. В крови содержатся следующие буферные системы.

^ Гемоглобиновый буфер является самой емкой буферной сис­темой. На его долю приходится до 75% всей буферной емкости кро­ви. Гемоглобин, как и другие белки, является амфолитом. Главное же заключается в том, что окисленный гемоглобин (КНЬ02), по­ступая в ткани, нейтрализует накапливающуюся там угольную кис­лоту: КНЬ02 + Н2С03 - ННЬ + КНС03 + 02. Кроме того, ННЬ свя­зывает образующийся» в тканях С02, образуя ННЬС02 (карбоминовая связь), тем самым уменьшает накопление в тканях Н2С03. В легких кровь освобождается от Н2С03 в виде С02: ННЬ + КНС03 + 02 - КНЬ02 + Н2С03 ->• Н20 + С02, то есть происходит обратная реакция.

^ Белковая буферная система является довольно мощной. Белки плазмы крови содержат достаточное количество кислых и основных радикалов, поэтому они могут нейтрализовать ионы Н+ и ОН".

^ Бикарбонатный буфер состоит из слабой угольной кислоты Н2С03 и бикарбонатов: ЫаНС03 в плазме и КНС03 в клетках. При


128

5—247

129

образовании в плазме избытка кислореагирующих продуктов ионы Н+ соединяются с анионами бикарбоната НС03~ с образованием слабой кислоты Н2С03. При накоплении избытка оснований ионы ОН~ связываются углекислотой и вместо сильного основания ОН~ образуется менее сильное НС03~.

^ Фосфатный буфер представлен солями одно- (№Н2Р04) и дву-замещенных (Ыа2НР04) фосфатов. Фосфатная буферная система является основной буферной системой клеток. При избытке в кро­ви Н2С03 происходит обменная реакция, что снижает (нормализу­ет) рН крови: Н2С03 + №2НР04 - ЫаНС03 + №Н2Р04.

Буферные системы стабилизируют рН крови лишь на молеку­лярном уровне, но не обеспечивают выведение из организма основ­ных или кислых элементов - это обеспечивается главным образом, легкими и почками.

^ 6.2. ФИЗИОЛОГИЯ ЭРИТРОЦИТОВ

А. Общая характеристика. Эритроциты - это клетки, ко­торые не имеют ядра, митохондрий, белоксинтезирующей сис­темы. Для эритроцитов характерны гомогенная цитоплазма и-наличие в ней гемоглобина, на долю которого приходится 34% общей сухой массы эритроцитов, до 60% воды, 6% других ве­ществ сухого остатка (в других клетках организма воды содер­жится до 80% и более), таким образом, сухой остаток эритроци­тов на 90-95% состоит из гемоглобина. Срок жизни эритроцитов составляет 120 дней.




130


Около 85% всех эритроцитов составляют дискоциты, имею­щие форму двояковогнутого диска (рис. 6.1). При такой форме эрит­роцитов значительно увеличивается их диффузионная поверхность. Остальные 15% эритроцитов имеют различную форму, размеры

и отростки на поверхности клетки. Размеры дискоидного эритро­цита 7,2 - 7,5 мкм.

Количество эритроцитов у мужчин колеблется в пределах 4,5-5,5х1012/л, у женщин - 3,7-4,7х1012/л. При физической нагруз­ке количество эритроцитов может увеличиваться (эритроцитов), что увеличивает доставку кислорода тканям организма.

В отличие от мембран всех других клеток организма мембрана эритроцитов легко проницаема для анионов НС03~, СЬ~, а также для 02, С02, Н+, ОН-, в то же время мало проницаема для катионов К+ и Ыа+. Проницаемость для анионов примерно в миллион раз выше, чем для катионов. Основными свойствами эритроцитов яв­ляются следующие.

/. ^ Пластичность (выражена только у дискоидных эритро­цитов) - это способность к обратимой деформации их при прохож­дении через микропоры и узкие извитые капилляры диаметром до 2,5-3 мкм. Это свойство определяется в основном формой эритро­цита, а также его структурными элементами.

^ 2. Способность эритроцитов к оседанию. Если кровь, лишен­
ную возможности свертываться, поместить в пробирку, то эритро­
циты оседают на дно, так как удельный вес эритроцитов (1,096)
выше, чем плазмы крови (1,027). Скорость оседания эритроцитов
(СОЭ) невысока: у мужчин 1-10 мм/час, у женщин - 2-15 мм/
час. Невысокая СОЭ в условиях нормы обусловлена преобладани­
ем в плазме крови белков альбуминовой фракции. Они являются
лиофильными коллоидами, создают вокруг эритроцитов гидратную
оболочку, что способствует удержанию их во взвешенном состоя­
нии. Глобулины представляют собой лиофобные коллоиды, умень­
шают гидратную оболочку вокруг эритроцитов и отрицательный
поверхностный заряд их мембран, что ведет к усилению агрегации
эритроцитов и ускорению их оседания.

При некоторых патологических процессах СОЭ повышается, так как увеличивается количество глобулинов. В норме соотношение альбуминов/глобулинов составляет 1,5-1,7 (белковый коэффици­ент).

^ 3. Агрегация (склеивание) эритроцитов возникает при замед­
лении движения крови и повышении ее вязкости. При этом разви­
ваются реологические расстройства. В случае быстрого восстанов­
ления кровотока агрегаты распадаются на полноценные клетки.
В патологических случаях агрегация может быть необратимой.

^ Б. Особенностью метаболизма эритроцитов (безъядерных клеток) является то, что они не способны синтезировать белок, гем, липиды, фосфолипиды, резко снижено содержание нуклеиновых кислот и АТФ. Почти полностью утрачена способность к дыханию

131

в связи с инактивацией флавиновых ферментов и цитохромоксида-зы, нарушается цикл трикарбоновых кислот. Энергетическое обес­печение клетки осуществляется только за счет утилизации глюко­зы в результате анаэробного гликолиза. В. Функции эритроцитов.

  1. ^ Транспорт газов - 02 и С02 (см. раздел 9.2), а также амино­кислот, пептидов, нуклеотидов к различным органам и тканям (кре-аторные связи), что способствует обеспечению репаративно-реге-нераторных процессов.

  2. Участие в регуляции кислотно-основного состояния орга­низма за счет гемоглобина, обладающего амфотерными свойства­ми и обеспечивающего до 70% всей буферной емкости крови.

  3. Участие в процессах свертывания крови и фибринолиза за счет адсорбции на своей мембране разнообразных ферментов этих систем (см. раздел 8.5).

  4. Участие в иммунологических реакциях организма (реак­ции агглютинации, преципитации, опсонизации, лизиса, реакции цитотоксического типа, что обусловлено наличием в мембране эрит­роцитов комплекса специфических полисахаридно-аминокислотных соединений, обладающих свойствами антигенов - агглютиногенов.

  5. ^ Детоксицирующая функция обусловлена способностью эритроцитов адсорбировать токсические продукты эндогенного и экзогенного, бактериального и небактериального происхождений и инактивировать их.

^ Г. Функции гемоглобина. Гемоглобин (греч. па1та - кровь и лат. §1оЬи5 - шарик) - хромопротеид, состоит из железосодержа­щих групп гема и белка глобина. На долю гема приходится 4% и на белковую часть - 96%. Структура гема идентична для гемоглоби­на всех видов животных. Различия в свойствах гемоглобина обус­ловлены различиями белкового компонента. В крови взрослого че­ловека содержатся НвА (95-98%, его иногда называют НЬА^, а также НвА2 (2-2,5%), НвР (0,1-2%) - они содержат разные пеп­тидные цепи. У мужчин содержание гемоглобина в среднем состав­ляет 130-160 г/л, у женщин - 120-140 г/л. Главными функция­ми гемоглобина являются дыхательная и буферная.

^ Д. Регуляция эритропоэза (процесса образования эритроци­тов в организме). Эритрон - совокупность эритроцитов крови, органов эритропоэза и эритроциторазрушения. Образование всех форменных элементов крови называют гемоцитопоэзом. Он осу­ществляется в специализированных гемопоэтических тканях: ми-елоидной (эпифизы трубчатых и полости многих губчатых костей) и лимфоидной (тимус, селезенка, лимфатические узлы). В миело-идной ткани образуются эритроциты, гранулоциты, моноциты, тром-

132

боциты, предшественники лимфоцитов. В лимфоидной ткани обра­зуются лимфоциты и плазматические клетки. В ней происходят процессы элиминации клеток крови и продуктов их распада.

^ Важнейшим регулятором эритропоэза является гликопро-теид эритропоэтин, который образуется в основном в юкстаг-ломерулярном аппарате (ЮГА) почек; в небольших концентра­циях эритропоэтин вырабатывается также в печени и слюнных железах.

^ Основным стимулятором образования эритропоэтина яв­ляется гипоксия различного происхождения.

Модуляторами эритропоэза являются гормоны. Тропные гормоны аденогипофиза (АКТГ, ТТГ, ГТГ) оказывают стимули­рующее воздействие на эритропоэз за счет усиления продукции соответствующих гормонов периферическими эндокринными железами: глюкокортикоидов, тироксина, трийодтиронина, андро-генов. Последние стимулируют секрецию эритропоэтина в почках, стимулирующим воздействием на эритропоэз обладает и сомато-тропин. В отличие от андрогенов эстрогены оказывают тормо­зящее влияние на эритропоэз.

^ Микроэлементы - железо, медь, марганец и цинк, а также витамин В12 необходимы для эритропоэза.

Фолиевая кислота стимулирует процессы биосинтеза ДНК в клетках костного мозга.

Кобаламин необходим для эритропоэза.

^ 6.3. ФИЗИОЛОГИЯ ЛЕЙКОЦИТОВ

А. Структурно-функциональная характеристика лейко­цитов.

Лейкоциты, в отличие от эритроцитов, в структурном отношении идентичны другим клеткам организма - они содержат ядро. Име­ется две группы лейкоцитов: гранулоциты (нейтрофилы, эозино-филы, базофилы) и агранулоциты (моноциты, лимфоциты). Лей-кограмма (лейкоцитарная формула) - это процентное соотношение различных видов лейкоцитов в крови: нейтрофилы -46-76%; эозинофилы - 1-5%; базофилы - 0-1%; моноциты -2-10%; лимфоциты - 18-40%. Размеры лейкоцитов варьируют от 4 мкм до 20 мкм. Продолжительность жизни гранулоцитов и моно­цитов от 4-5 дней до 20 дней, лимфоцитов -до 100-120 дней. Коли­чество лейкоцитов в периферической крови колеблется в пределах 4х109/л - 9х109/л в зависимости от баланса гормонов, нервно­го напряжения, сезона, времени суток. Содержание лейкоцитов

133

может быть увеличено (лейкоцитоз) или уменьшено (лейко­пения).

^ Лейкоциты обладают амебовидной подвижностью, мигра­цией (диапедезом) - способностью проникать через стенку неповрежденных капилляров - и фагоцитозом - способностью поглощать и переваривать микробов, чужеродные частицы и от­мирающие клетки. Эти свойства определяют функции лейкоци­тов: защитную (фагоцитоз - пожирание микробов, бактери­цидное и антитоксическое действие, участие в иммунных реакциях, противоопухолевое действие); регенеративную -лейкоциты способствуют заживлению поврежденных тканей; транспортная - они являются носителями ряда ферментов.

Б. Защитная функция лейкоцитов.

Иммунитет — это способность организма защищаться от ге­нетически чужеродных тел и веществ. Выделяют различные виды иммунитета, в частности клеточный и гуморальный иммунитет.

^ Клеточный иммунитет обусловлен активностью Т-лимфоци-тов, связан с образованием специализированных клеток, которые реагируют на чужеродные антигены. При этом последние уничто­жаются или же происходит разрушение антигена с помощью других клеток, таких, как макрофаги. За счет клеточного иммунитета оттор­гается чужеродная, пересаженная ткань, а также уничтожаются ге­нетически переродившиеся клетки собственного организма.

^ Гуморальный иммунитет обусловлен В-лимфоцитами, кото­рые принимают участие в формировании защитных антител про­тив антигенов. Связывание антител с антигеном облегчает погло­щение антигена фагоцитами.

Фагоцитоз - это разновидность клеточного иммунитета. На­блюдается внутрисосудистый и тканевой фагоцитоз. Он может быть завершенным и незавершенным. Завершенный фагоцитоз заканчивается полным уничтожением чужеродного объекта и обес­печивает высокую степень защиты организма. Незавершенный фагоцитоз не обеспечивает противомикробной защитной функции организма и, напротив, способствует развитию инфекционного про­цесса. Клетки, обладающие способностью к фагоцитозу, делятся на две группы: макрофаги (моноциты костного мозга и крови, сво­бодные и фиксированные макрофаги тканей; моноциты трансфор­мируются в тканевые макрофаги по мере их миграции из кровото­ка) и микрофаги (нейтрофилы, эозинофилы, базофилы).

Моноциты и макрофаги являются основными клетками моно-нуклеарно-фагоцитирующей системы (МФС). В различных органах и тканях макрофаги имеют свои особенности, и их обо­значают различными терминами. Так, макрофаги соединительной

ткани называют гистиоцитами, печени - звездчатыми ретику-
■ лоэндотелиоцитами
(купферовские клетки), легких - альвео-

лярными макрофагами.

Макрофаги продуцируют ряд факторов, стимулирующих пролиферацию различных клеток, в частности, эритроцитов, фибробластов, различных видов лейкоцитов, мезенхимальных кле­ток. Кроме росторегулирующих факторов макрофаги секретируют ферменты: активатор плазминогена, лизосомальные, колла-геназу, эластазу,лизоцим, белки комплемента, интерферон, про-стагландины, цитотоксин против опухолевых клеток, моноки-ны. Макрофаги, как и нейтрофилы, являются полифункциональными клетками. Они принимают участие в противоопухолевом иммуните­те, пролиферации стволовых клеток, гранулопоэзе.

Нейтрофильные лейкоциты продуцируют гуморальные неспеци­фические факторы защиты - комплемент, лизоцим, интер­ферон, а также миелопероксидазу, лактоферрин, катионные белки с сильными антимикробными свойствами.

Лизоцим - это низкомолекулярный катионный белок, расщеп­ляющий мукополисахариды. В нейтрофильных лейкоцитах он не синтезируется, а только депонируется.

Интерферон - фактор противовирусной защиты. Он оказыва­ет антипролиферативное и противоопухолевое действие, по­давляет трансформацию лимфоцитов и выработку антител, акти­вирует макрофаги, усиливает цитотоксическое действие сенсибилизированных лимфоцитов.

^ Основным звеном иммунной системы организма являются лимфоциты.

По морфологическим и функциональным признакам различают Т- и В- лимфоциты.

Обучение клеток-предшественников Т-лимфоцитов проис­ходит в тимусе в результате контакта клеток со стромой тимуса поддействием гуморальных факторов, вырабатываемых в нем. Име­ется три основные популяции Т-лимфоцитов. Т-киллеры, осуще­ствляющие иммунный лизис клеток-мишеней (возбудителей инфек­ционных заболеваний, актиномицетов, микобактерий, опухолевых клеток). Они участвуют в реакциях отторжения трансплантата -пересаженного органа. Т-эффекторы (хелперы) участвуют в передаче антигенного сигнала на В-лимфоцит, в его превращении в плазматическую клетку и в синтезе антител. Т-супрессоры подав­ляют иммунный ответ на антигены и предотвращают возможность развития аутоиммунных реакций, подавляя клоны лимфоцитов, способных реагировать на собственные антигены организма. Т-клетки иммунной памяти выполняют роль архива информа-


134

135

ции о состоявшихся контактах организма с различными антигена­ми. Эти клетки обеспечивают воспроизведение иммунного ответа в случае повторного контакта организма с данным антигеном. Тд-клетки вырабатывают специальные вещества, регулирующие активность стволовых клеток.

В-лимфоциты обучаются в лимфатических узлах кишечника, костном мозге, миндалинах. Популяция В-клеток тоже неоднород­на. Различают В-киллеры, осуществляющие цитолиз клеток-ми­шеней, В-супрессоры, подавляющие иммунный ответ, В-клетки иммунной памяти. В-лимфоциты обеспечивают реакции гумо­рального иммунитета, среди них имеются клетки-продуценты антител, причем каждая лимфоидная клетка способна продуциро­вать антитела одной специфичности. Среди В-лимфоцитов есть клетки, продуцирующие неспецифические иммуноглобулины. •-

^ Кроме Т- и В-лимфоцитов имеются и другие их виды.

В. Регуляция лейкопоэза.

Лейкопоэз - это процесс образования лейкоцитов. Различают миелопоэз (продукция гранулоцитов и моноцитов) и лимфопоэз (созревание лимфоцитов). Важную роль в регуляции миелопоэза играют лейкопоэтины (колониестимулирующий фактор -КСФ). Источником образования КСФ у человека являются моно-цитарно-макрофагальные клетки костного мозга, лимфоциты, клет­ки плаценты, клетки стромы кроветворных органов и клетки сосу­дистой стенки. КСФ имеет гликопротеидную природу. Имеются ингибиторы миелопоэза (лактоферрин, содержащийся в мемб­ране макрофагов, кислый изоферритин, гранулоцитарные кейло-ны). Адаптивные гормоны - АКТГ, глюкокортикоиды, катехо-ламины - стимулируют лейкоцитоз.

Регуляция лимфопоэза осуществляется несколькими механиз­мами. Антитела способны усиливать или подавлять продукцию лимфоцитов. Лимфоцитарные кейлоны - тканевоспецифические ингибиторы клеточного деления. Лимфоцитарные кейлоны пред­ставляют собой гликопротеиды, они вырабатываются в тимусе, се­лезенке, лимфобластами. Иммунодепрессивное действие кейлонов связано с подавлением синтеза ДНК и пролиферации лимфоцитар-ных клеток. Процессы дифференцировки лимфоцитов регулируют лимфопоэтины.

Под влиянием избыточных концентраций глюкокортикоидов органы лимфоидной ткани - тимус, селезенка, лимфатические узлы - атрофируются, развивается лимфопения. Следует отметить, что по реакции на глюкокортикоиды все лимфоциты можно разде­лить на две фракции: глюкокортикоидчувствительные и глю-кокортикоидрезистентные лимфоциты.

136

^ 6.4. СИСТЕМЫ ГРУПП КРОВИ

Пока не знали о существовании групп крови, при попытках пе­реливания крови с лечебной целью от человека человеку наблюда­лись благоприятные случаи, но чаще (до 70%) развивались тяже­лые осложнения, иногда заканчивающиеся смертью пациента вследствие склеивания (агглютинации) эритроцитов и их разруше­ния (гемолиза).

К. Ландштейнер (1900) впервые обнаружил, что плазма или сы­воротка одних людей способна агглютинировать (склеивать) эрит­роциты других людей. Это явление получило наименование изоге-магглютинации.

Агглютинация эритроцитов происходит в результате реак­ции антиген - антитело. Мембрана эритроцитов содержит специ­фические гликолипиды, обладающие антигенными свойствами. Они называются агглютиногенами (или гемагглютиногенами - анти­генами). С агглютиногенами реагируют специфические растворен­ные в плазме антитела, относящиеся к фракции у-глобулинов - аг­глютинины (или изогемагглютинины - антитела). При реакции антиген - антитело молекула антитела образует «мостик» между несколькими эритроцитами и в результате они склеиваются.

В крови каждого человека содержится индивидуальный набор специфических эритроцитарных агглютиногенов.

В настоящее время известно около 400 антигенов, расположен­ных в мембране эритроцитов. Только из тех антигенов, которые учитываются в классификациях групп крови, можно составить по­чти 300 млн комбинаций. Если же учитывать и все остальные анти­гены, то число комбинаций превысит 500 млрд. К счастью, антиген­ные свойства большинства этих антигенов выражены слабо, и для целей переливания крови ими можно пренебречь. Наибольшее зна­чение для клиники имеют системы АВО и КЬ.

Система АВО. Антигены (агглютиногены) А и В системы АВО являются полисахаридами, они находятся в мембране эрит­роцитов и связаны с белками и липидами. Ноль (0) означает отсут­ствие антигена.

^ Антитела (агглютинины) аи$ к антигенам АиВ находят­ся в плазме крови. Одноименные агглютиногены и агглютинины в крови одного и того же человека не встречаются. Если же в экспе­рименте в пробирке смешать кровь с одноименными агглютиноге­нами и агглютининами, то произойдет реакция агглютинации (скле­ивания) эритроцитов. Подобная реакция с возможным разрушением эритроцитов (гемолиз) и с тяжелыми последствиями может произойти в случае ошибки при переливаниях крови. Име-

137

ется четыре основные группы крови системы АВО: Осф (I), Ар (II), Ва (III), АВо (IV). При этом группа I называется группой О, II - А, III - В, IV - АВ. В эритроцитах обнаружены разновидности агглю-тиногенов А (А, - А7) и В (В[ - В6), антигенные свойства которых убывают от 1 до 7. Найдены также агглютинины ах и ос2, получив­шие название экстраагглютининов. Кроме агглютининов в плаз­ме или сыворотке крови содержатся гемолизины: их также два вида и они обозначаются, как и агглютинины, буквами аир. При встре­че одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температу­ре 37-40°С. Вот почему при переливании несовместимой крови у человека уже через 30-40 с наступает гемолиз эритроцитов. При комнатной температуре, если встречаются одноименные агглюти-ногены и агглютинины, происходит агглютинация, но не наблюда­ется гемолиз. Кроме того, в крови людей различных групп могут находиться иммунные анти-А- и анти-В-антитела. В крови одного и того же человека не может быть одноименных агг-лютиногенов и агглютининов, так как в противном случае происходило бы массивное склеивание эритроцитов, что не­совместимо с жизнью.

Поэтому при переливании крови необходимо предупредить встречу одноименных агглютиногенов и агглютининов. В про­тивном случае могут произойти агглютинация и гемолиз эрит­роцитов со смертельным исходом.

По системе АВО необходимо переливать только одно-группную кровь.

Географическое распределение групп крови. Более 40% жи­телей Центральной Европы имеют группу крови А, примерно 40% -группу 0, 10% или более - группу В и около 6% - группу АВ. У 90% коренных жителей Америки отмечена группа 0. Более 20% населения Центральной Азии имеют группу крови В. Исходя из данных о наличии и соотношении различных групп крови в тех или иных районах земного шара, антропологи могут делать выводы о происхождении и смешении народов.

Система резус (КН-Нг). Эта система открыта в 1937-1940 годах К. Ландштейнером и А. Винером при иммунизации кроликов кровью обезьян макак-резусов. Антигены системы резус (КН) являются липопротеидами. Эритроциты 85% людей содержат КЬ-агглютиноген, кровь таких людей называют резус-положительной (Кп+). В эритроцитах 15% людей резус-антиген отсутствует - это резус-отрицательная кровь (КЬг). Имеется несколько разновидно­стей антигенов системы резус. Наиболее важными из них являют­ся: Кпо (Д), гН (С) и гЬ'ЧЕ).

Главной особенностью системы резус является то, что она не имеет врожденных антител. Антирезус-антитела (антирезус-аг­глютинины) в организме могут выработаться при переливании резус-отрицательному пациенту резус-положительной крови, что недопустимо, поскольку при повторном переливании резус-отри­цательному человеку резус-положительной крови произойдет иммунологический конфликт, так как в крови реципиента выра­ботаются заранее антитела. Иммунологический конфликт возмо­жен и в случаях беременности, когда женщина резус-отрица­тельна, а плод - резус-положителен. В этом случае при нарушении целостности сосудистого плацентарного барьера эритроциты КЬ+ крови плода попадают в КН~ крови матери и вызывают выработку у нее Кп-антител. Последние, проникая через плаценту в кровь пло­да, могут вызвать агглютинацию его эритроцитов с последующим их гемолизом. В результате этого у новорожденного развивается тяжелая гемолитическая анемия.

Имеются и другие редкие системы крови (Левис, Даффи, Кид и др.), в группе крови О (I) системы АВО иногда встречается анти­ген Н, у которого антигенные свойства выражены слабо, концент­рация антител к Н-антигену низкая, поэтому практического значе­ния Н-антиген не имеет.

^ 6.5. СИСТЕМА РЕГУЛЯЦИИ АГРЕГАТНОГО СОСТОЯНИЯ КРОВИ (РАСК)

Система РАСК - это система организма, которая обеспечи­вает: 1) сохранение жидкого состояния крови в норме; 2) свер­тывание крови в экстремальных состояниях; 3) своевременное восстановление стенок капилляров и других сосудов, кото­рые повреждаются под действием тех или иных факторов. В насто­ящее время существует много противоречивых определений про­цессов свертывания крови и системы (систем), обеспечивающих остановку кровотечения, антисвертывание и фибринолиз. Идет дискуссия о целесообразности выделять отдельные системы или подсистемы. С введением понятия «система РАСК» (имеется одна система) существующая проблема решается путем выделения основных механизмов деятельности системы РАСК: 1) механиз­мы гемостаза обеспечивают остановку кровотечения; 2) механиз­мы антисвертывания поддерживают жидкое состояние крови; 3) механизмы фибринолиза обеспечивают растворение тромба (кровяного сгустка) и восстановление просвета сосуда (рекана-лизация).


138

139





Различают два механизма гемостаза: сосудисто-тромбоцитар-ный и коагуляционный (свертывание крови).

^ Сосудисто-тромбоцитарный гемостаз


140

Этот вид гемостаза называют также первичным, он обеспечи­вает остановку кровотечения из мелких сосудов с низким кровя­ным давлением, диаметр которых не превышает 100 мкм. В норме кровотечение из мелких сосудов останавливается в течение 2-4 мин. Сосудисто-тромбоцитарный гемостаз осуществляется с помо­щью образования тромбоцитарной пробки (тромбоцитарного тром­ба). Он проходит в три стадии (рис. 6.2).

^ 1. Первичный спазм сосудов обусловлен выбросом в кровь в
ответ на болевое раздражение адреналина и норадреналина и длит­
ся не более 10-15 с. В дальнейшем наступает вторичный спазм
сосудов,
обусловленный активацией тромбоцитов и отдачей в кровь
сосудосуживающих агентов - адреналина, серотонина. Поврежде­
ние сосудов сопровождается немедленной активацией тромбоци­
тов, что обусловлено появлением высоких концентраций АДФ (из
разрушающихся эритроцитов и травмированных сосудов), а также
с обнажением субэндотелия, коллагеновых и фибриллярных струк­
тур. В результате создаются условия для адгезии, агрегации и об­
разования тромбоцитарной пробки.

  1. Образование тромбоцитарной пробки. Адгезия тром­боцитов обусловлена наличием в плазме и тромбоцитах особого белка - фактора Виллебранда (Р\\0. Одновременно с адгезией происходит агрегация тромбоцитов, осуществляемая с помо­щью фибриногена - белка, содержащегося в плазме и тромбоци­тах и образующего между ними связующие мостики, что и приво­дит к появлению тромбоцитарной пробки. Агрегация тромбоцитов может быть обратимой, что зависит от недостаточной дозы агреги­рующего (активирующего) агента. Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются гранулы и содержащи­еся в них биологически активные соединения - АДФ, адреналин, норадреналин, серотонин и др., что приводит к вторичной, необрати­мой агрегации. Одновременно с высвобождением тромбоцитарных факторов происходит образование тромбина, резко усиливающего агрегацию и приводящего к появлению сети фибрина, в которой застревают эритроциты и лейкоциты. При этом тромбоциты подтя­гиваются друг к другу, тромбоцитарная пробка сокращается и уп­лотняется.

  2. Ретракция тромбоцитарной пробки осуществляется бла­годаря контрактильному белку тромбостенину.

Существенную роль в сосудисто-тромбоцитарном гемостазе иг­рают производные арахидоновой кислоты.

^ Коагуляционный механизм гемостаза

Коагуляционный (вторичный) гемостаз осуществляется с помо­щью свертывания крови (гемокоагуляции). При этом растворимый белок плазмы крови фибриноген переходит в нерастворимое со­стояние - фибрин, в результате чего образуется студнеобразный сгусток, закрывающий просвет поврежденного сосуда. В сверты­вании крови принимают участие много факторов свертывания крови. Они содержатся в плазме крови, форменных элементах и в тканях. Как правило, плазменные факторы свертывания крови об-

141

разуются в печени, и для образования большинства из них необхо­дим витамин К. Плазменные факторы обозначаются римскими цифрами. Все факторы свертывания крови - в основном белки, большинство из них являются ферментами, в крови находятся в неактивном состоянии, активируются друг другом в процессе свер­тывания крови. Активные факторы обозначаются с буквой а, на­пример, 1а, Па и т.д.

Фактор I (фибриноген) - белок плазмы крови, под влияни­ем тромбина переходит в фибрин, волокна которого составляют основу тромба. Принимает участие в агрегации тромбоцитов.

Фактор II (протромбин) под влиянием протромбиназы пе­реходит в тромбин (фактор Па).

Фактор III (тромбопластин) входит в состав мембран кле­ток всех тканей и форменных элементов крови. Активирует фактор VII и, вступая с ним в комплекс, переводит фактор X в Ха. В плазме в физиологических условиях практически не содержится.

Фактор IV (Са2+) участвует в образовании комплексов фак­торов свертывания крови, входит в состав протромбиназы. Спо­собствует агрегации тромбоцитов, связывает гепарин. Принимает участие в ретракции сгустка и тромбоцитарной пробки, тормозит фибринолиз.

Фактор V (проакцелерин) глобулин, активируется тром­бином. Усиливает действие фактора Ха на протромбин (входит в состав протромбиназы).

Фактор VI исключен из классификации, так как это фактор Уа.

Фактор VII (проконвертин) принимает участие в формиро­вании протромбиназы по внешнему механизму. Активируется фак­торами III, ХНа, 1Ха, Ха.

Фактор VIII (антигемофилъный глобулин А) образует ком­плексную молекулу с фактором Виллебранда и специфическим ан­тигеном, активируется тромбином. Совместно с фактором 1Ха спо­собствует переводу фактора X в Ха.

Фактор IX (антигемофилъный глобулин В) активирует факторы X и VII.

Фактор X (Стюарта - Прауэра) является составной час­тью протромбина.

Фактор XI (предшественник тромбопластина) активи­руется фактором ХПа. Необходим для активации фактора IX.

Фактор XII (Хагемана, или контакта). Место синтеза не установлено. Активируется отрицательно заряженными поверхно­стями, адреналином, калликреином. Запускает внутренний меха­низм образования протромбиназы и фибринолиза, активирует фак­торы XI, VII и переводит прокалликреин в калликреин.

142

Фактор XIII (фибринстабилизирующий фактор, фибри-наза). Содержится практически во всех тканях и форменных эле­ментах. Стабилизирует фибрин.

Фактор XIV (фактор Флетчера - прокалликреин). Уча­ствует в активации факторов XII, IX и плазминогена. Переводит кининоген в кинин. Активируется фактором ХПа.

Фактор XV (фактор Фитцджеральда, Фложек, Вильям-са). Высокомолекулярный кининоген. Образуется в тканях. Акти­вируется калликреином. Принимает участие в активации фактора XII и переводе плазминогена в плазмин.




143


^ Процесс свертывания крови — это ферментативный, цепной (каскадный), матричный процесс перехода растворимого белка фибриногена в нерастворимый фибрин. Каскадным он называет­ся потому, что в процессе гемокоагуляции происходит последова­тельная цепная активация факторов свертывания крови. Сверты­вание крови является матричным процессом, так как активация факторов гемокоагуляции осуществляется на матрице. Матрицей могут быть фосфолипиды мембран разрушенных форменных эле­ментов (главным образом тромбоцитов) и обломки клеток тканей. Процесс свертывания крови осуществляется в три фазы (рис. 6.3).

Первая фаза - образование протромбиназы - может прохо­дить по внешнему и внутреннему механизму. Внешний механизм предполагает обязательное присутствие тромбопластина (фактор III), внутренний же связан с участием тромбоцитов (фактор Р3) или разрушенных эритроцитов. Вместе с тем внутренний и внешний пути образования протромбиназы имеют много общего, так как ак­тивируются одними и теми же факторами и приводят в конечном итоге к появлению одного и того же активного фермента - фактора Ха, выполняющего функции протромбиназы. При этом тромбопла-стин служит матрицей, на которой в присутствии ионов Са2+ раз­вертываются ферментативные реакции.

Вторая фаза процесса свертывания крови - переход фактора II в фактор Па - осуществляется под влиянием протром­биназы (фактор Ха) в присутствии фактора Уа и сводится к проте-олитическому расщеплению протромбина, благодаря чему появля­ется активный фермент тромбин.

Третья фаза процесса свертывания крови - переход фибри­ногена в фибрин - протекает в три этапа. На первом этапе под влиянием фактора Па от фибриногена отщепляются фибринопеп-тиды и образуется фибрин-мономер (фактор 1т). На втором, не­ферментативном, этапе благодаря процессу полимеризации фиб­рина-мономера формируются олигомеры и димеры фибрина, из которых за счет продольного и поперечного связывания образу­ются протофибриллы - легкорастворимый фибрин, или фибрин 5, быстро лизирующийся под влиянием протеаз (плазмина, трип­сина). На третьем, ферментативном, этапе фактор XIII (фибрина-за, фибринстабилизирующий фактор) после активации тромбином в присутствии ионов Са2+ «прошивает» фибринополимеры допол­нительными перекрестными связями, в результате чего появ­ляется трудно растворимый фибрин, или фибрин 1 0п5о1иЫе). В результате этой реакции сгусток становится резистентным к фибринолитическим (протеолитическим) агентам и плохо под­дается разрушению.

Восстановление кровотока в поврежденном сосуде осуществ­ляется с помощью фибринолиза.

Фибринолиз

В крови даже в отсутствие повреждения сосудов посто­янно происходит превращение небольшого количества фиб­риногена в фибрин. Это превращение уравновешивается непре­рывно протекающим фибринолизом. Лишь в том случае, когда механизмы свертывания дополнительно стимулируются в резуль­тате повреждения ткани, образование фибрина в области повреж-

дения начинает преобладать и наступает местное свертывание кро­ви. Фибринолиз всегда сопровождает процесс свертывания крови и активируется факторами, принимающими участие в этом процес­се. Ферментом, разрушающим фибрин, является плазмин (фибри-нолизин), который в крови находится в неактивном состоянии в виде профермента плазминогена.

Активация плазмина обеспечивается механизмами, аналогич­ными внешнему и внутреннему свертывающим механизмам. Плаз­мин представляет собой сериновую протеазу. Тромболитическое действие плазмина обусловлено его сродством к фибрину. Плазмин отщепляет от фибрина путем гидролиза растворимые пептиды, ко­торые тормозят действие тромбина и таким образом препятствуют дополнительному образованию фибрина. Плазмин расщепляет так­же другие факторы свертывания - фибриноген, факторы V, VII, IX, XI, XII. Благодаря этому он не только обладает тромболитическим эффектом, но и снижает свертываемость крови.

Внешний механизм активации фибринолиза осуществля­ется при участии тканевых активаторов, которые синтезируются главным образом в эндотелии сосудов. К ним относятся тканевый активатор плазминогена и урокиназа. Последняя также образует­ся в юкстагломерулярном комплексе почки. Внутренний меха­низм активации фибринолиза осуществляется плазменными активаторами, в частности факторами УНа, ХПа, калликреином, ко­торый проявляется лишь в присутствии так называемых проакти-ваторов. Важнейшие из проактиваторов (один из них - прокаллик-реин) - это лизокиназы, высвобождающиеся из клеток крови при травматических или воспалительных повреждениях тканей. В плаз­ме находятся и ингибиторы фибринолиза. Фибринолитическая ак­тивность крови во многом определяется соотношением активато­ров и ингибиторов фибринолиза.

При ускорении свертывания крови и одновременном торможе­нии фибринолиза создаются благоприятные условия для развития тромбозов. Наряду с ферментативным фибринолизом существует так называемый неферментативный фибринолиз, который обус­ловлен комплексными соединениями естественного антикоагу­лянта гепарина с ферментами и гормонами. Неферментативный фибринолиз приводит к расщеплению нестабилизированного фибрина, очищая сосудистое русло от фибрин-мономеров и фиб­рина 3 (В. А. Кудряшов).

Поскольку в организме даже в нормальных условиях существу­ет опасность свертывания крови и образования тромбов, сформи­ровались и антисвертывающие механизмы, поддерживающие кровь в жидком состоянии.


144

145

^ Механизмы антисвертывания крови

Предотвращение свертывания крови при отсутствии по­вреждения сосудов обеспечивают естественные антикоагулян­ты. В нормальных физиологических условиях активность механиз­мов противосвертывания превалирует над активностью механизмов свертывания крови, поэтому она находится в жидком состоянии. Естественные антикоагулянты делят на первичные и вторичные.

Первичные антикоагулянты всегда присутствуют в циркулирующей крови. Согласно 3. С. Баркгану и К. М. Бишев-скому (с изменениями), основными естественными первичными ан­тикоагулянтами обычно являются следующие.

Антитромбин III - у3-глобулин. Синтезируется в печени. Про­грессивно действующий ингибитор тромбина, факторов Ха, 1Ха, Х1а, ХПа, калликреина и в меньшей степени - плазмина и трипсина.-Плазменный кофактор гепарина.

Гепарин - сульфатированный полисахарид. Трансформирует антитромбин III из прогрессивного в антикоагулянт немедленного действия, значительно повышая его активность. Образует с тром-богенными белками и гормонами комплексы, обладающие антико-агулянтным и неферментным фибринолитическим действием.

Важную роль в антисвертывании крови играют также следующие первичные антикоагулянты: о^-антиплазмин, о^-макроглобулин, о^-анти-трипсин, С^эстеразный ингибитор, липопротеин - ассоциированный коагуляционный ингибитор (ЛАКИ), аполипопротеин А-11, плацен­тарный антикоагулянтный протеин, протеин С, протеин 5, тромбо-модулин, ингибитор самосборки фибрина, «плавающие» рецепторы, антитела к активным факторам свертывания.

Вторичные антикоагулянты образуются в процессе фор­мирования и растворения фибринового сгустка. К ним отно­сят «отработанные» факторы свертывания крови (принявшие учас­тие в свертывании) и продукты деградации фибриногена и фибрина, обладающие мощным антиагрегационным и противосвертывающим действием, а также стимулирующие фибринолиз. Роль вторичных антикоагулянтов сводится к ограничению внутрисосудистого свер­тывания крови и распространению тромба по сосудам.

^ Роль вегетативной нервной системы в процессах свертывания крови и фибринолиза

Повышение тонуса симпатической нервной системы и поступ­ление в кровоток адреналина и норадреналина ведут к ускорению свертывания крови и усилению фибринолиза. Это наблюдается в различных условиях жизнедеятельности и напряжениях организ-

ма - при простои кровопотере, гипоксии, интенсивной мышечной работе, болевом раздражении, стрессе. Реализуется посредством активации фактора Хагемана, что приводит к запуску внешнего и внутреннего механизмов образования протромбиназы, а также к стимуляции фибринолиза. Кроме того, под влиянием адреналина усиливается образование апопротеина III - составной части тром-бопластина и наблюдается отрыв клеточных мембран от эндоте­лия, обладающего свойствами тромбопластина, что способствует резкому ускорению свертывания крови. Из эндотелия сосудов вы­деляются также тканевой активатор плазминогена и урокиназа, приводящие к стимуляции фибринолиза.

В случае повышения тонуса парасимпатической нервной системы (раздражение блуждающего нерва, введение АХ, пилокар­пина) также наблюдаются ускорение свертывания крови и стиму­ляция фибринолиза. В этих условиях происходит выброс тромбо­пластина и активаторов плазминогена из эндотелия сердца и сосудов.

Таким образом, основным эффектором регуляции свертывания крови является сосудистая стенка.

1   2   3   4   5   6   7   8   9   ...   22

отлично
  1
Ваша оценка:

Похожие:

Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Богданова Т. Г. Сурдопсихология: Учеб пособие для студ высш пед учеб заведений

Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Стребелева Е. А. Дошкольная олигофренопедагогика: Учеб для студ высш учеб, заведений. М.: Гуманит

Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Носкова О. Г. Н84 Психология труда: Учеб пособие для студ высш учеб, заведений / Под ред. Е. А. Климова

Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Попов В. А. К68 Профилактика наркотической зависимости у детей и молодежи: Учеб пособие для студ

Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Основы специальной психологии: Учеб пособие для студ сред пед учеб заведений / Л. В. Кузнецова, Л.

Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Селиверстов В. И. Заикание у детей: Психокоррекционные и дидактические основы логопедического воздействия:

Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Вконце статей дан небольшой перечень основных контрольных вопросов. Для студентов высших учебных
Инфекционные болезни животных / Б. Ф. Бессарабов, А. А. Вашу-И74 тин, Е. С. Воронин и др.; Под ред....
Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Абрамова Г. С. А 16 Возрастная психология: Учеб пособие для студ вузов. 4-е изд., стереотип
А 16 Возрастная психология: Учеб пособие для студ вузов. 4-е изд., стереотип. М.: Издательский центр...
Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Задачи проекта: Формирование у детей мотивационной сферы гигиенического поведения, безопасной жизни,

Дубровский В. И. С50 \\ Физиология физического воспитания и спорта: Учеб для студ сред, и высш учебных заведений icon Задачи курса: формирование у детей мотивационной сферы гигиенического поведения, безопасной жизни,

Разместите кнопку на своём сайте:
Медицина


База данных защищена авторским правом ©MedZnate 2000-2016
allo, dekanat, ansya, kenam
обратиться к администрации | правообладателям | пользователям
Документы