|
Скачать 2.83 Mb.
|
Проводники. Проводники толстопленочных схем выполняются путем нанесения через трафареты проводниковых паст. Проводниковые пасты должны обеспечивать получение следующих характеристик композиции (после вжиганин):
Проектирование топологии толстопленочных проводников во многом аналогично проектированию печатных плат. Проводники должны изготавливаться предельно короткими, чтобы уменьшить сопротивление схемы. Поверхностное сопротивление толстопленочных проводников должно изменяться в пределах от 0,005 Ом/а до 0,1 Ом/а в зависимости от типа применяемой пасты. Для нанесения проводников необходимо использовать только одну сторону подложки. Количество пересечений должно быть минимальным, поскольку для их создания необходимы две дополнительные операции нанесения и вжигания пленок (нанесение межслойного диэлектрика и второго проводящего слоя). Для современной технологии стандартной шириной проводника считается 0,25 мм, однако, если это необходимо, можно изготавливать полоски шириной до 0,125 мм. Такие же значения допускаются и для расстояний между проводниками. Толщина слоя проводника, например, на основе композиций палладий-серебро составляет 10-25 мкм, минимальная ширина (длина) проводника колеблется в пределах 0,15-0,20 мм при нанесении пасты на керамику и 0,20-0,30 мм при нанесении на слой диэлектрика. Минимальное расстояние между проводниковыми элементами 0,05-0,20 мм в зависимости от рецептурного состава пасты. Резисторы. Резистивные пасты изготавливаются на основе более высокоомных функциональных материалов, обычно композиций: серебро-палладий-окись палладия, серебро-окись рутения, висмут-рутений, рутений-иридий, платина-окись иридия. Резистивные пасты, изготавливаемые на основе композиции палладий-серебро обеспечивают номинальные сопротивления резисторов от 25 Ом до 1 МОм. Сопротивление квадрата резистивной пленки соответствует ряду значений: 5,100,500,1000,3000,6000,20000,50000 Ом/а . Температурный коэффициент сопротивления подобных паст не превышает 800.10-6 1/град в интервале температур -60...+125 °С. Толщина резистивных пленок после вжигания составляет примерно 18-25 мкм. Учет отношения длины пленочного резистора L к его ширине В является очень важным при проектировании толстопленочных резисторов. Отношение сторон L/B или B/L никогда не должно превышать 10. Его лучше выбирать равным 3 или меньше. При проектировании схемы следует избегать зигзагообразных резисторов или резисторов в форме меандра. При такой геометрии на резисторе образуются области перегрева, а сопротивление резистора трудно подгонять к номиналу. Минимальный размер резистора должен быть порядка 0,5x0,5 км, однако резисторы должны быть по возможности большими для увеличения процента выхода годных и облегчения их последующей подгонки. Для обеспечения надежного электрического контакта резистор должен быть уже проводника на 0,25 мм (по 0,125 мм с каждой стороны), а длина перекрытия резистора проводником должна быть не меньше 0,125 мм (Рисунок 2.1). Минимальное расстояние от края контактной площадки до края резистора должно быть не меньше 0,25 мм. Расчет резисторов производится следующим образом. Номинальное значение сопротивления резистора определяется по формуле R=paKф (9.2.1) где pa - сопротивление квадрата резистивной пленки, Ом/а; K=l/i, - коэффициент формы. ![]() Рисунок 9.2.1. Толстопленочный резистор; I - резистивная пленка, 2 - контактная площадка. Ширина резистора ![]() где Р - расчетное значение мощности рассеяния резистора, Вт; Ро - максимальная удельная мощность рассеяния резистивной пленки, Вт/мм2; Кр - коэффициент запаса мощности, учитывающий подгонку резистора, КР = 2п/100 + 1; п -допустимое отрицательное отклонение сопротивления резистора от номинального до подгонки, %. Максимальное значение Р принимается равна 52%. Расчетная длина резистора определяется из соотношения для Кф и по формуле (2.2). Расчет резисторов, имеющих Кф<1, начинают с определения длины, заменяя ширину В в формуле (2.2) на длину l . Удельная мощность рассеяния резисторов на основе композиции палладий-серебро обычно принимается равной 3 Вт/сиг, однако толстопленочные резисторы могут быть нагружены и сильнее, до 6 Вт/ см и более (для паст других составов), при условии правильной организации охлаждения. Конденсаторы. Диэлектрические пленки в толстопленочных микросхемах применяются в качестве диэлектриков конденсаторов, межслойной изоляции, защитных слоев. Диэлектрические пасты для конденсаторов изготавливаются на основе смеси керамических материалов и флюсов. Толщина диэлектрических толстых пленок для конденсаторов после термической обработки составляет 40-60 мкм. Используя пленки, обеспечивающие удельную емкость Со= 3700 пФ/см2, изготавливают конденсаторы с номинальной емкостью от 500 до 300 пФ, а пленки с Со = 10000 пФ/см2 позволяют производить конденсаторы в диапазоне от 100 до 2500 пФ. В большинстве толстопленочных гибридных схем и микросборок используются многослойные дискретные керамические конденсаторы, поскольку на площади, необходимой для нанесения конденсатора с номиналом 300 пФ, можно расположить навесной многослойный конденсатор на 10000 пФ. Погрешность номинальной емкости конденсаторов обычно составляет ±15%. Пробивное напряжение не менее 150 В. Величина диэлектрической проницаемости для диэлектрических паст конденсаторов на основе композиции титанат бария - окись титана - окись алюминия - легкоплавкое стекло составляет от 10 до 2000. Исходя из основного соотношения, для емкости конденсатора ![]() где ![]() Расчетная площадь верхней обкладки конденсатора определяется по формуле S=C/C0 (9.2.4) где С - номинальное заданное значение емкости; С0 -удельная емкость. Нижняя обкладка конденсатора должна выступать за край верхней не менее, чем на 0,3 мм, пленка диэлектрика - за край нижней обкладки не менее, чем на 0,2 мм. Пасты верхних обкладок должны быть инертны к лужению. 10. 1 Классификация физико-химических методов обработки и очистки. Источники и виды загрезнений ИЭОТ. Назначение операций технохимической обработки. Химическое и электрохимическое травление пластин. Анизотропное травление п/п. Контроль качества очистки поверхности. В соответствии с применяемыми средствами очистку делят на жидкостную и сухую. Жидкостная очистка выполняется органическими -растворителями; разнообразными составами, содержащими щелочи, кислоты, пероксид, и другие реактивы, водой. Подобрать жидкое средство, одновременно удаляющее все возможные по-' верхностные загрязнения, весьма сложно, поэтому жидкостная ' очистка включает ряд последовательных операций. Нерастворимые в воде органические жировые загрязнения делают поверхность гидрофобной, т. е. плохо смачиваемой водой и большинством растворов. Для равномерной очистки поверхность подложек (пластин) необходимо перевести в гидрофильное, т. е. хорошо смачиваемое водой, состояние. Операция удаления жировых за- ![]() Рисунок 10.1.1 Классификация методов очистки и травления пластин и подложек грязнений, сопровождаемая переводом поверхности из гидрофобного состояния в гидрофильное, называется обезжириванием. Обезжиривание — первая операция при жидкостной очистке. Сухая очистка применяется на этапе формирования элементов и межэлементных соединений микросхем и, как правило, выполняется непосредственно перед проведением ответственных технологических процессов (напыление пленок, литография) или совмещена, т. е. проводится в одном оборудовании, с последующей обработкой (например, с получением термического оксида, с эпитаксиальным наращиванием полупроводниковых слоев). Методы сухой очистки исключают необходимость применения дорогостоящих и опасных в работе жидких реактивов, а также проблемы межоперационного хранения пластин и подложек и очистки сточных вод, которые являются немаловажными при использовании жидких средств очистки. Кроме того, процессы сухой очистки более управляемы и легче поддаются автоматизации. С точки зрения механизма процессов все методы очистки можно условно разделить на физические и химические (см. рисунок 10.1.1). При физических методах загрязнения удаляются простым растворением, отжигом, обработкой поверхности ускоренными до больших энергий ионами инертных газов. В тех случаях, когда загрязнения нельзя удалить физическими методами, применяют химические методы, при которых загрязнения удаляют: их замещением легко удаляемыми веществами, переводом в легко растворимые комплексные соединения или травлением пластин (подложек) . Травление сопровождается удалением поверхностного слоя вместе с имеющимися на поверхности загрязнениями. На рисунке 10.1.1 мы выделили травление, чтобы подчеркнуть, что в технологии микросхем (как будет ясно далее) травление не всегда имеет целью очистку. Оно применяется для размерной обработки, удаления слоя с нарушенной механическими обработками • структурой, локального удаления слоев различных материалов при формировании топологии микросхем, выявления поверхностных дефектов полупроводников и др. 10.2 Плазменные методы удаления материала с поверхности твердого тела. Сущность и классификация методов обработки поверхности Плазмохимическое травление, как и ионное, проводят в вакуумных установках и также используют плазму газового разряда. Плазмохимическое травление (в отличие от чисто физического распыления при ионном травлении) имеет химическую природу. Оно основано на использовании обладающих большой реакционной способностью химически активных частиц, получаемых в плазме газового разряда. Процесс плазмохимического травления можно разделить на ряд этапов: доставка плазмообразующего газа, пара или смеси в камеру вакуумной установки; образование химически активных частиц в газовом разряде; доставка их к обрабатываемой поверхности; химические реакции с образованием легко летучих соединений; десорбция и удаление образующихся летучих соединений через откачную -систему вакуумной установки. Плазмообразующие газы выбирают исходя из свойств обрабатываемого материала. Для травления кремния и некоторых металлов применяют галогеносодержащие молекулярные газы, так как именно в их плазме образуются необходимые химически активные частицы, переводящие поверхностные слои в летучие соединения. Для разбавления и обеспечения требуемых параметров травления в плазму дополнительно вводят аргон, кислород, азот. Наиболее часто для травления кремния и его соединений применяют смесь фреона-14 CF4 с (2 ... 8)% кислорода. Присутствие кислорода повышает скорость травления и качество очистки. Фреон-14 относительно инертен, при любых температурах он не взаимодействует с кремнием. В плазме химически активные частицы образуются в результате взаимодействия молекул газа с ускоренными электронами, которые в отличие от тяжелых частиц обладают существенно большими энергиями. В плазме фреона-14 с кислородом образование химически активных частиц — возбужденного атома фтора F*, положительно заряженного радикала CF3+, атомарного кислорода О — сопровождается реакциями ![]() Травление кремния и его соединений сопровождается реакциями: ![]() Тетрафторид кремния SiF4 — летучее соединение, легко удаляемое из рабочей камеры установки откачкой. На поверхности кремниевых пластин возможно образование углерода: Si + CF3+ => C + 3F* + Si + e. (20.2.3) Присутствие в плазме кислорода способствует очистке поверхности от углерода за счет его оксидирования до СО или СО2. Кислород также способствует повышению концентрации возбужденных атомов фтора в результате образования радикалов COF* и их диссоциации: COF* => F* + CO ![]() Это увеличивает скорость травления кремния. Атомарный кислород также очищает поверхность от органических загрязнений. При плазмохимическом травлении физическое распыление практически отсутствует, так как энергия ионов не превышает 100 эВ. В зависимости от конструкции установок различают плазменное и радикальное плазмохимическое травление. Плазменное травление осуществляют непосредственно в плазме газового травления, т. е. с участием всех химически активных частиц, как с большим (F* — 0,1 ... 1 с), так и с малым, временем жизни ('CF+з — около 10 мкс). В камерах диодного типа (Рисунок 10.2.1) пластины кремния помещают на нижнем медленно вращающемся электроде (0,1 об/с). Пластины электрически, изолированы от электрода, чтобы исключить ионную бомбардировку. Радикальное плазм о химическое травление проводят в области вакуумной камеры отделенной от плазмы газового разряда перфорированным металлическим экраном (Рисунок 10.2.2) или магнитными электрическими полями. ВЧ-плазма возбуждается между цилиндрическими поверхностями рабочей камеры и экрана. Травление осуществляется только нейтральными химически активными атомами О или радикалами F* с большим временем жизни, проникающими из плазмы в зону расположения пластин. Заряженные частицы плазмы не могут попасть к поверхности пл.астин через отверстия цилиндрического экрана. В зоне,, свободной от заряженных частиц, возбужденные атомы фтора и атомарный кислород, многократно соударяясь с молекулами рабочего газа, движутся разупорядоченно, что обеспечивает высокую однородность травления от пластины к пластине и по площади каждой пластины. Так как возбужденные атомы и свободные радикалы отличаются высокой реакционной способностью, то эффективность травления существенно повышается. По сравнению с ионным травлением при одинаковых параметрах разряда скорость возрастаег более чем на порядок. Благодаря электрической активации газов илазмохимическое травление проводится при существенно меньших температурах 100... 300 °С по сравнению с обычным газовым травлением. Плазмохимическое травление из-за химического механизма обладает высокой избирательностью относительно раз- ![]() Рисунок 10.2.1. Схема вакуумной камеры диодного типа для плазмохимического травления непосредственно в плазме: 1 — подача рабочего газа; 2— вакуумная камера; 3 — электрод Рисунок 10.2.1. Схема вакуумной камеры диодного типа для плазмохимического травления непосредственно в плазме: ![]() Рисунок 10.2.2. Схема вакуумной камеры для радикального плазмохимического травления: 1 — кварцевая камера; 2— перфорированный цилиндр; 3 — кассета с пластинами (подложками); 4 — ВЧ-индуктор; 5—подача рабочего газа; 6 — откачной патрубок личных материалов (например, F+ травит кремний значительно быстрее, чем диоксид кремния). Благодаря невысокой энергии частиц, поступающих на обрабатываемую поверхность, радиационные дефекты незначительны. Химический механизм травления обусловливает наличие бою> вой скорости травления, что является недостатком при локальной обработке. К недостаткам плазмохимического травления можно также отнести: ограниченное количество соединений для получения в плазме химически активных частиц, обеспечивающих образование летучих веществ; сложность химических реакций, протекающих в плазме и на обрабатываемой поверхности; большое число взаимосвязанных технологических и конструктивных параметров. Последние трудности преодолеваются по мере изучения и освоения процессов. Реактивное ионное травление. Реактивное ионное (называемое также ионно-химическим) травление по механизму процесса является комбинированным методом. Удаление обрабатываемого материала происходит в результате его распыления ускоренными ионами и образования легколетучих соединений при взаимодействии с химически активными частицами плазмы. От плазмохимического травления оно отличается тем, что энергия ионов больше и достаточна для распыления, а от ионного травления — тем, что используется не инертная, а содержащая химически активные частицы плазма. При этом физическое распыление интенсифицирует химические реакции, а химические реакции, ослабляя межатомные связи на обрабатываемой поверхности, увеличивают скорости распыления. По аналогии с ионным и плазмохимическим травлением реактивное ионное травление может выполняться при расположении обрабатываемых пластин (подложек) в плазме газового разряда (реактивное ионно-плазменное травление) или в вакууме и подвергаться воздействию пучка ионов, полученных в автономно расположенном источнике (реактивное ионно-лучевое травление). Для реактивного ионно-плазменного и ионно-лучевого травления применяют те же рабочие газы, что и для плазмохимического травления. Оборудование для реактивного ионно-плазменного травления аналогично установкам ионно-плазменного травления. Пластины располагают на электроде, не изолированном от нижнего электрода (см. Рисунок 2.20). Реактивное ионно-лучевое травление выполняют в вакуумных установках, аналогичных установкам для ионно-лучевого травления (см. Рисунок 2.19). Благодаря химическим реакциям реактивное ионное травление (и плазменное, и лучевое) обладает по сравнению с ионно-лучевым травлением большими скоростями (в 3 ... 15 раз) и избирательностью травления (в 2... 10 раз), а по сравнению с плазмохимическим травлением меньшими скоростью травления (в 2... 3 раза) и боковой составляющей скорости при локальном травлении. Для уменьшения радиационных дефектов обрабатываемых образцов процессы травления проводят в режимах, обеспечивающих превышение скорости удаления слоев за счет химических реакций над скоростями распространения дефектов, образующихся .вследствие ионной бомбардировки. 10.3 Очистка поверхности газовым травлением Сущность процесса заключается в химическом взаимодействии обрабатываемого материала с газообраз-ным веществом и образовании при этом легко удаляемых летучих соединений. Загрязнения при газовом травлении удаляются вместе с поверхностным слоем пластин или подложек. В качестве газов-реагентов для травления кремниевых пластин можно применять галогены, галогеноводороды, соединения серы, пары воды. Небольшие количества этих газов добавляют к газу-носителю (водороду или гелию) и транспортируют в камеру установки. Травление кремния хлористым водородом широко используется перед выращиванием на пластинах кремниевых слоев Si (тв.) + 4НС1 (газ) = SiCl4 (газ) + 2Н2 (газ). (10.3.1) Пары хлористого водорода доставляются водородом в реакционную камеру установки эпитаксиального наращивания, где расположены кремниевые пластины, нагретые до температуры 1150... ... 1250 °С. Газовое травление сапфира водородом, в отличие от жидкостного, позволяет получать поверхность подложек, свободную от механически нарушенного слоя и от микропримесей, что очень важно для последующего выращивания на них слоев кремния. Травление сапфира сопровождается химической реакцией А12О3 (тв.) + 2Н2 (газ) == А12О (газ) + Н2О (газ). (10.3.2) В интервале температур 1200... 1600 °С травление сапфира водородом полирующее. Газовое травление по сравнению с жидкостным позволяет по- • лучать более чистые поверхности. Во многих случаях газовое травление имеет ограниченное применение из-за высоких температур обработки и необходимости использования особо чистых газов. Однако в тех случаях, когда газовое травление совместимо с последующим процессом (например, с выращиванием на кремниевых пластинах кремниевых слоев), его применение целесообразно. 11 Oсновные методы производства волоконных световодов Принципы и особенности построения ВОПС (волоконно-оптической системы передач). Одномодовые световоды. Многомодовые световоды с и ступенчатым профилем. Волоконные световоды со специальными свойствами. Полимерные световоды. Модифицированный процесс EVD (MCVD) 11.1 Одномодовые световоды. Многомодовые световоды с и ступенчатым профилем. Волоконные световоды со специальными свойствами. Полимерные световоды. По назначению волоконные световоды можно разделить на пять основных групп:
6. Волокна для среднего ИК диапазона (Х — 2 ... 50 мкм) со сверхнизкими потерями. Световоды первой, второй и отчасти третьей групп имеют одинаковую композицию и изготавливаются из кварцевого стекла, легированного различными добавками, изменяющими показатель преломления в нужную сторону. Кварцевое стекло имеет высокие однородность и чистоту, что обусловливает малые потери на рассеяние и поглощение (см. § 4.6), отличается высокой температурой плавления, химической и радиационной стойкостью. Технология производства высококачественных кварцевых волокон, как будет видно ниже, достаточно сложна, но доведена до промышленного уровня, обеспечивающего массовый выпуск без снижения качества. Требования к характеристикам световодов третьей и четвертой групп не являются предельно жесткими, поэтому они изготавливаются из более дешевых материалов (многокомпонентные стекла) и по более простой технологии. Производство полимерных волокон является самым простым и дешевым в рассматриваемом ряду. Производство волокон шестой группы требует освоения новых материалов и технологий и находится в лабораторной стадии. Наиболее распространенные в мировой практике способы изготовления высококачественных кварцевых волоконных световодов являются разновидности процесса химического осаждения основного стеклообразующего окисла SiO2 и легирующих окислов из парогазовой смеси CVD процесса (Chemical Vapour Deposition). Галоиды кремния, германия, бора, фосфора и т. п., входящие в состав парогазовой смеси, при высокой температуре реагируют с кислородом: ![]() SiCl4 + O2 => SiO2 + 2Cl2 GeCl4 + O2 => GeO2 +2Cl2 (11.1.1) 4BBr3 + 3O2 => 2B2O3 + 6Br3 4POCl3 + 3O22 => 2P2O5 + 6Cl2 В результате реакции образуется мелкодисперсная масса, напоминающая белую сажу, которая после прославления превращается в прозрачное стекло, содержащее около 90 % SiO2. Добавки легирующих окислов меняют коэффициент преломления в нужную сторону в соответствии с зависимостями, приведенными на рисунок 4.31. Содержание добавок в стекле регулируется в ходе процесса путем изменения состава парогазовой смеси галоидов, концентрации ее компонентов. Из рисунка 11.1.1 видно, что добавки окислов германия и фосфора повышают показатель преломления стекла, а добавка окиси бора снижает его. ![]() Рисунок 11.1.1. Влияние легирующих окислов на коэффициент преломления Минимальными потерями в области 1,3 и 1,5 мкм обладают кварцевые стекла, не содержащие бора, поэтому в последние годы в качестве присадки, снижающей показатель преломления, используется фтор, образующийся при окислении фреона CCl2F2 или фтористого углерода СF4. Естественно, что исходные компоненты процесса CVD должны быть высокой химической чистоты. Во всех разновидностях процесса CVD производство волоконных световодов разделяется на две основные стадии. В первой стадии — изготовлении заготовки для вытяжки волокна — проявляются различия перечисленных вариантов, тогда как вторая стадия — вытяжка волокна из заготовки — одинакова по технологии и оборудованию для всех вариантов. Параметры заготовки во многом определяют характеристики волоконного световода, вытянутого из нее. Тип световода — одномодовый, многомодовый градиентный или ступенчатый — полностью определяется профилем показателя преломления заготовки. Все варианты процесса CVD позволяют организовать гибкое производство с быстрой перестройкой с одного типа световода на другой. Рассмотрим подробнее наиболее распространенный в настоящее время технологический метод. 11.2 Модифицированный процесс EVD (MCVD) В этом способе заготовка изготавливается осаждением стеклообразующих окислов на внутреннюю поверхность кварцевой опорной трубы. Установка для производства заготовок методом MCVD схематически изображена на рисунке 11.2.1. В ней можно выделить три основных функциональных блока: блок формирования парогазовой смеси, тепломеханический станок, систему управления и контроля параметров процесса. Первыми операциями при производстве являются контроль и отбор опорных кварцевых труб, которые при вытяжке трансформируются в оболочку волоконного световода. Типовые размеры опорных труб: внешний диаметр 20 ... 25 мм, внутренний диаметр 16 ... 20 мм, длина около 1 м. Опорная труба помещается в тепломеханический станок, в котором она вращается вокруг продольной оси со скоростью порядка 60 об/мин. Вдоль вращающейся опорной трубы со скоростью 20 см/мин перемещается кислородно-водородная горелка. В начале процесса производится полировка трубы в пламени горелки при температуре около 1600 "С, при которой оплавляются имеющиеся микротрещины. Парогазовая смесь образуется при прокачке газа — носителя (кислорода или инертных газов) через смесители, заполненные жидкими галоидами кремния, германия и т. п. Состав смеси и закон применения состава во времени в ходе процесса MCVD зависят от типа изготавливаемого световода (одномодовый, градиентный, ступенчатый) и формируется под управлением ЭВМ по заданной программе ![]() Рисунок 11.2.1. Установка для производства заготовок методом MCVD: 1 - смеситель с жидким SiСl2; 2 - один из смесителей с легирующим галоидом; 3—вентили; 4—опорная трубка; 5—вращающиеся патроны; б—кислородно-водородная горелка; 7—система откачки и очистки продуктов реакции Парогазовая смесь поступает внутрь опорной трубки, и в горячей зоне с температурой 1500 ...1700 °С, перемещающейся вдоль трубки вместе с движением горелки, происходит осаждение окислов 5Юг, СеО2 и других в виде ультрачистого мелкодисперсионного порошка. При последующем движении горелки вдоль трубки порошок проплавляется, превращаясь в слой стекла толщиной 1 ... 10 мкм. Легированное кварцевое стекло, получающееся в результате осаждения, является исключительно чистым в силу высокой чистоты исходных компонентов. Кроме того, в процессе MCVD происходит химическая осушка реагирующих материалов и осаждаемых слоев путем реакции 2Н2О + 2С12 => 4НС1 + О2 (4.131) Хлор всегда присутствует в парогазовой смеси как продукт реакции окисления тетрахлоридов кремния и германия. В результате осажденное стекло содержит значительно меньшее число гидроксильных ионов ОН, чем опорная труба. По этой причине потери на поглощение в используемых спектральных диапазонах (см. § 4.6) в осажденном стекле существенно меньше, чем в опорной трубе, и для снижения этих потерь в световоде в заготовке формируется внутренняя оболочка. Для этого первые несколько слоев (около 20) делаются с показателем преломления, равным показателю преломления трубы или несколько меньшим. Парогазовая смесь, вводимая в трубы, во время осаждения этих слоев содержит пары SiCl4 с добавкой ВВr3, что предпочтительнее фреона. Последующие слои формируют сердцевину будущего световода. Для градиентных световодов показатель преломления увеличивается от слоя к слою по заданному закону, близкому к параболическому; заготовки для волокон со ступенчатым профилем имеют однородную сердцевину с показателем преломления большим, чем в оболочке. Общее число слоев в сердцевине обычно равно 50 ... 80. Как правило, для повышения показателя преломления используется только GeО2, однако температура осаждения его велика и, чтобы исключить деформацию опорной трубы, температуру осаждения снижают добавкой в парогазовую смесь РОСl3. Поскольку наличие в стекле окисла Р2О5 увеличивает поглощение в диапазоне длин волн 1,5 ... 1,7 мкм (поглощение на ионах Р—ОН), его концентрация не должна превышать 0,2% молярных. При этом температура осаждения снижается до 1650 °С. После осаждения заданного программой количества слоев температура горячей зоны увеличивается до 1900 ... 2100 "С, труба размягчается и «схлопывается» под действием поверхностных сил, превращаясь в сплошной стеклянный цилиндр-заготовку. В сечении заготовка представляет собой увеличенную в 100 ... 300 раз структуру волоконного световода с соответствующим профилем показателя преломления. Специфика процесса MCVD такова, что профиль показателя преломления заготовки всегда отличается от желаемого по двум причинам. Первая состоит в том, что показатель преломления каждого слоя постоянен, поэтому профиль его в заготовке есть ступенчатая аппроксимация заданной функции. Вторая вызвана тем, что при температуре схлопывания, достаточно высокой: 1900...2100 °С, последние слои частично испаряются, причем скорость испарения ОеСЬ выше, чем скорость испарения 5Ю2- В результате в профиле показателя преломления заготовки в центре ее образуется провал, который сохраняется и в волокне (рисунок 11.2.2). Даже из приведенного здесь краткого описания процесса следует, что эффективное производство заготовок для высококачественных световодов с высокой воспроизводимостью параметров возможно только при условии полной автоматизации процесса. На рисунке 11.2.3 схематически изображена обобщенная по публикациям система управления процессом MCVD. Система предназначена для управления рядом установок, производящих одновременно заготовки для световодов различныхтипов. Центральный компьютер с общесистемными полномочиями связан с местными микропроцессорами на каждой установке. К местным микропроцессорам с локальными полномочиями подключены контроллеры, управляющие параметрами процесса: составом и скоростью потока парогазовой смеси, вращением опорной трубы, скоростью движения горелки вдоль трубы, температурой в горячей зоне трубы, откачкой и очисткой продуктов реакции. Задание на каждую установку вводится через центральный компьютер, через него же выводится информация о ходе процесса на каждой установке. Система является очень гибкой и быстро перестраиваемой. Гибкость процесса MCVD позволяет использовать его для производства волоконных световодов, сохраняющих поляризацию. Изготовление заготовки для такого волокна ведется по следующей программе: при осаждении первых 50 слоев, соответствующих внутренней оболочке, опорная труба с интервалом в 1 ... 2 с поворачивается на 180 ° вокруг продольной оси, затем в обычном режиме при равномерном вращении трубы вокруг оси осаждаются слои с повышенным показателем преломления, формирующие сердцевину. При схлопывании анизотропные напряжения во внутренней ![]() Рисунок 11.2.2. Профиль показателя преломления волокна, изготовленного по методу MCVD ![]() Рисунок 11.2.3. Схема управления процессом производства по методу МСУЭ: 1 — контроллер состава смеси; 2—контроллер скорости потока смеси; 3 — контроллер вращения опорной трубы; 4 — контроллер движения горелки; 5 — контроллер температуры горячей зоны; 6 — контроллер управления горелкой; 7 — контроллер откачки и очистки продуктов реакции оболочке, которая получается эллиптической в сечении (рисунок 4.35), приводят к дву-лучепреломлению в сердцевине заготовки, а затем после вытяжки — ив сердцевине волокна. Заготовки, изготовленные по методу МСУБ, обладают чрезвычайно высокими показателями по геометрическим, механическим и оптическим параметрам. Гибкость этого метода очевидна: на одном технологическом оборудовании путем изменения программы он позволяет производить заготовки для волокон разных типов (одно-модовых, одномодовых с сохранением поляризации, многомодовых градиентных и ступенчатых). Именно поэтому этот процесс доведен до высокого промышленного уровня и используется для массового производства во всем мире. Однако ему присущи и недостатки, главные из которых низкая эффективность использования галоидов (порядка 40 ... 60%) и сравнительно малая скорость осаждения (0,25 ... 0,5 г/мин). 11.3 Принципы и особенности построения ВОПС (волоконно-оптической системы передач). С точки зрения проектировщиков ВОСП выбор и получение оптимального типа волокна является критическим, но не завершающим этапом в сложном процессе изготовления оптического кабеля. После вытяжки волокна технологам приходится решать ряд сложных проблем, чтобы в процессе заделки волокна в кабель не были ухудшены характеристики волокна, а также чтобы эти характеристики не подвергались заметной деградации в процессе прокладки и эксплуатации ВОСП. Волокно является исходным продуктом для скрутки кабеля искомой конструкции. Кабели разных типов в зависимости от областей применения могут иметь от 1 до 144 волокон, которые либо укладываются в спиральные пазы или канавки, либо заливаются в сердечник кабеля вместе с упрочняющими и токоведущими элементами. Для изготовления кабелей традиционного типа, т. е. цилиндрических, используются крутильные машины, похожие на аналогичные устройства в традиционном кабельном производстве. При изготовлении ленточных кабелей технология иная и более напоминает процесс изготовления электрических проводников ленточной формы. Сечения некоторых типов кабелей показаны на рисунке 11.3.1. ![]() Рисунок 11.3.1. Сечение кабелей: а—повивная скрутка; б—многоповивная скрутка; в—пучковая скрутка; 1 —оптическое волокно; 2 — промежуточный корд; 3 — оболочка кабеля; 4 — упрочающий элемент |