|
Скачать 2.83 Mb.
|
Скорости роста слоев SiO2 в различных окислителях (полученные экспериментально) Таблица 5.9.1 О ![]() окисления, толщиной ° ![]() 0,5 мкм 1 мкм С ![]() 1200 5,3 22 Влажный кислород 1000 1,2 4,3 1200 0,4 1,4 Пары воды 1000 0,8 3,3 1200 0,3 1 5.10. Пиролитическое получение пленок из газовой фазы при нормальном и пониженном давлении Пиролитическое осаждение используют для получения толстых слоев оксида кремния при низких температурах, когда термическое окисление неприемлемо из-за существенного изменения параметров предшествующих диффузионных слоев. Пиролитическое осаждение обеспечивает большую производительность, высокую равномерность слоев, качественное покрытие уступов металлизации и позволяет создавать изолирующие и пассивирующие слои не только на поверхности кремния, но и германия, арсенида галлия, а также других материалов. Помимо оксида кремния осаждают слои SiC, Si3N4, ФСС и поликремния. При пиролитическом осаждении оксида кремния происходит термическое разложение сложных соединений кремния (алкоксисиланов) с выделением SiO2, например: тетраэтоксисилан Si(OC2H5)4 650-700° С SiO2 ![]() тетраметоксисилана Si(OCH3)4 800-850°С SiO2 +2С2Н4+2Н2О или оксиление моносилана SiH4+2O2 400-450° С Si02 ![]() Последнюю реакцию обычно используют и при осаждении фосфорно-силикатного стекла с добавлением к газовой смеси фосфина РН3, разбавленного азотом до 1,5 %-ной концентрации. Фосфин вступает в реакцию с кислородом 4РН3 +5О2 => 2Р2О5 +6H2 ![]() образуя оксид фосфора, который легирует SiO2. В пленке оксида кремния оказывается 1 - 3 % фосфора, за счет чего повышается ее термомеханическая прочность, пластичность и снижается пористость. При содержании фосфора до 8-9 % слои ФСС используют для планаризации поверхности пластин, имеющей рельеф. ^ При плазмохимическом осаждении (ПХО) процесс разложения кремнийсодержащих соединений активизируется высокочастотным (ВЧ) разрядом, образующим в газовой среде при пониженном давлении низкотемпературную кислородную плазму. Плазма состоит из атомов, радикалов, молекул в разных степенях возбуждения, а также электронов и ионов. Плазмохимическое осаждение обычно проводят при давлении в реакционной камере 66 - 660 Па и частоте ВЧ-разряда 13,56-40 МГц. Температура процесса более низкая, чем при пиролитическом осаждении, благодаря чему получаемый оксид кремния можно использовать для пассивации поверхности ИМС, так как не происходит взаимодействия кремния с металлом проводников. Механизм образования пленок при ПХО состоит из трех основных стадий: образования в зоне разряда радикалов и ионов, адсорбции их на поверхности пленки SiO2 и перегруппировки адсорбированных атомов. Перегруппировка (миграция) адсорбированных поверхностью атомов и стабилизация их положения представляют важную стадию роста пленки. Одновременно с образованием пленки происходит десорбция продуктов реакции с поверхности. Скорости десорбции и миграции атомов сильно зависят от температуры пластины, причем при большей температуре получаются пленки с меньшей концентрацией захваченных продуктов реакции, большей плотностью и более однородным составом. При стимулировании процесса осаждения плазмой появляются новые параметры, влияющие на скорость осаждения пленки, ее состав, плотность, показатель преломления, равномерность, внутренние напряжения и скорость травления. Кроме температуры, состава газовой смеси, ее расхода, давления, геометрии реактора на скорость окисления влияют ВЧ-мощность, напряжение и частота, геометрия электродов и расстояние между ними. В качестве рабочих газов обычно используют соединения кремния и окислители: Si2О(СН3)6 + 8О2 230-250 C 2Si02 ![]() а также гексаметилдисилоксан SiH4 + 4N2 О 200-350°C SiO2 ![]()
Диффузионное легирование полупроводников. Механизмы диффузии. Распределение примесей при диффузии и неограниченного и ограниченного источников. Факторы, влияющие на процессе диффузии. Классификация методов диффузии. Многостадийная диффузия. Локальная диффузия. Виды диффузантов. Контроль параметров диффузионных слоев, и процесса диффузии. Физико-химические основы ионного легирования (ИЛ)Преимущества ИЛ перед диффузией. Аппаратное оформление процесса ИЛ и принципы построения технологических систем для имплантации. Послеимплантационный обжиг в инертной и окислительной среде. 6.1. Распределение примесей при диффузии и неограниченного и ограниченного источников. При формировании ИМС встречаются два случая диффузии: из бесконечного и ограниченного источников. Под диффузией из бесконечного (постоянного) источника понимают такое состояние системы, когда количество примеси, уходящее из приповерхностного слоя полупроводникового материала, восполняется равным количеством, поступающим извне. При этом поверхностная концентрация примеси остается постоянной, но резко убывает по глубине р-и-перехода (Рисунок 6.1.1). При использовании ограниченного источника в приповерхностном слое имеется конечное количество атомов примеси, уходящие атомы не восполняются и поверхностная концентрация примеси со временем уменьшается (Рисунок 6.1.2). Показанное на рисунке распределение N(x) соответствует теоретически рассчитанному. Реальное распределение несколько сложнее за счет влияния диффузии, протекающей в других направлениях, отличных от нормали к поверхности пластины, и наличия ранее введенных в материал примесей. ![]() Рисунок 6.1.1. Распределение примеси N(x) при диффузии из бесконечного (постоянного) источника по толщине пластины х: No - поверхностная концентрация ![]() Рисунок 6.1.2. Распределение примеси N(xj при диффузии из ограниченного источника по толщине пластины х: N01, N02, N03 - поверхностные концентрации в момент времени t1, t2, t3 соответственно; No -исходная поверхностная концентрация 6.2 Локальная диффузия ![]() Рисунок 6.2.1. Схема локальной диффузии: 1 - маскирующий оксид; 2 — диффузионная область; 3 — пластина; l1 - размер окна в оксиде; l2 — размер полученной диффузионной области; ![]() При локальной диффузии следует учитывать искривление ее фронта у края окна в маскирующем оксиде (Рисунок 6.2.1), коте рое увеличивает размеры диффузионной области на Д/ и влияе на форму p-n-перехода. В структурах с малыми размерам] окон глубина p-n-переходов может быть завышена и неоднородна по пластине. Значения ![]() При создании активных и изолирующих областей ИМ< часто используют двухстадийную диффузию (Рисунок 6.2.2). Дл; этого вначале в поверхность полупроводникового материал 2 с нанесенным на нее маскирующим слоем оксида 1 вводя определенное количество легирующей примеси из бесконечной источника, создавая ее высокую поверхностную концентрацш при небольшой глубине диффузионной области ("загонка' примеси) (Рисунок 6.2.2, а, б). ^ проводят при сравнительно невысоки: температурах (950 — 1050° С) в окислительной атмосфере На поверхность наносят слой примесно-силикатного стекл; 4 (поверхностный источник), под которым формируется высоколегированный объемный источник 3 (Рисунок 6.2.2 ,б). Вторую стадию — диффузионный отжиг, называемую "раз гонкой" (Рисунок 6.2.2, в), проводят предварительно удалив примесно-силикатное стекло. Температура второй стадии выше 1050 -1230° С. Примеси, введенные на первой стадии, перераспределяются, их поверхностная концентрация уменьшается, а глуби на проникновения в полупроводниковый материал увеличивается до заданной xj. Создается требуемая диффузионная об ласть 5. Температура и длительность второй стадии диффузии определяются заданными параметрами p-n-перехода. ![]() Рисунок 6.2.2. Стадии "загонки" (а, б) и "разгонки" (в) примеси при проведении двух стадийной диффузии: 1 - маскирующий оксид; 2 -пластина; 3 - объемный источник; 4 — примесно-силикатное стекло; 5 — диффузионная область после разгонки; 6 — маскирующая пленка для последующей литографии Процесс ведут в окислительной среде, одновременно формируя маскирующую пленку 6 для последующей фотолитографии. 6.3 Многостадийная диффузия Необходимость проведения двухстадийной диффузии при легировании бором связана с тем, что требуется получать распределение со сравнительно невысокой поверхностной концентрацией, а с помощью одностадийной диффузии это не всегда удается. Для остальных примесей двухстадий-ная диффузия обеспечивает заданные параметры р-п- переходов и возможность получения маскирующего оксида. Двухстадийную диффузию проводят различными способами ![]() Рисунок 6.3.1. Схема процесса диффузии в открытой трубе из газообразного или жидкого (а), твердого (б) и поверхностного (в) источников: 1 — газовая система; 2 - источник примеси; 3 — кварцевая труба; 4 - кремниевые пластины; 5 — нагреватель; 6 — выходное отверстие Наиболее широко в технологии производства ИМС используют способ диффузии в открытой трубе (Рисунок 6.3.1) . Он является основным для первой стадии. Кремниевые пластины 4 (от 50 до 200 шт.) загружают в кассете в кварцевую трубу 3 через ее выходной конец, сообщающийся с атмосферой. Входной конец трубы соединен с газовой системой 1 подачи газа-носителя. Газообразные диффузанты подаются из баллона и перед входом в реактор смешиваются с азотом и кислородом. В зоне реакции образуется оксид легирующего элемента, а на поверхности кремниевых пластин выделяется элементарная примесь. Например, процесс диффузии фосфора сопровождается реакциями ![]() на поверхности Si 2Р2О5 + 5Si -> 5SiO2 + 4Р Пары жидких диффузантов из дозатора разбавляются газом-носителем и также образуют оксиды соответствующих элементов, например: 4РОС13 + ЗО2 => ЗР2О5 + 6С12 Диффузия из газообразных и жидких источников проводится в однозонной диффузионной печи с резистивными нагревателями 5 (Рисунок 6.3.1,а, в). ^
При проведении диффузии из твердого источника в ряде случаев используют двухзонные печи с нагревателем 5 (Рисунок6.3.1, б). При этом в низкотемпературной зоне помещают источник примеси 2, а в высокотемпературной — кассету с пластинами 4. Газ-носитель, поступая из системы подачи 1, вытесняет из кварцевой трубы воздух, который удаляется через отверстие 6. Проходя через зону источника примеси, газ-носитель захватывает атомы примеси и переносит их в зону расположения пластин. Атомы адсорбируются на поверхности и диффундируют в глубь кремниевых пластин. В качестве поверхностного источника используют легированные оксиды, примесно-силикатные стекла, пленки металлов (например, золота), слои легированного поликристаллического кремния. Диффузию проводят в слабо окислительной среде. Способ диффузии в открытой трубе позволяет легко управлять составом парогазовой смеси, скоростью потока газа и обеспечивает требуемый профиль распределения примесей. Воспроизводимость параметров диффузии от пластины к пластине и по площади каждой пластины зависит от распределения температуры в рабочей зоне печи, числа пластин, их расположения относительно газового потока, типа диффузанта, чистоты проведения процесса и др. Диффузию в замкнутом объеме (ампульный способ) проводят в кварцевой ампуле 2, в которую помещают пластины ^ откачивают ее до остаточного давления 10~2 — 10~3 Па или заполняют инертным газом и запаивают (Рисунок 6.3.2). Перед использованием ампулу тщательно очищают и прокаливают в вакууме при температуре 1200° С в течение двух часов. Ампулу вводят в кварцевую трубу 1 диффузионной печи с нагревателем 3. При нагревании источника пары примеси осаждаются на поверхности полупроводниковых пластин и диффундируют в глубь нее. Ампульным способом можно провопить диффузию мышьяка, бора, сурьмы, фосфора с однородностью легирования до ± 2,5 %. Его достоинством является минимальная токсичность, так как процесс происходит в замкнутом объеме. После проведения процесса ампулу разрушают (вскрывают). То, что она имеет одноразовое использование, сильно удорожает процесс. В настоящее время ампульный способ применяют преимущественно при диффузии мышьяка. Диффузия в по л у герметичном объеме (бокс-метод) является промежуточным способом между диффузией в открытой трубе и в ампуле. Так же, как в последнем ![]() Рисунок 6.3.2. Схема процесса диффузии в замкнутом объеме: 1 - кварцевая труба; 2 - ампула; 3 - нагреватель; 4 — кремниевые пластины; 5 - источник примеси ![]() Рисунок 6.3.3. Схема процесса диффузии бокс-методом: 1 - кварцевая труба; 2 - ампула; 3 — нагреватель; 4 — кремниевые пластины; 5 - источник примеси; 6 — выходное отверстие; 7 — пришлифованная крышка лучае, пластины ^ помещают в кварцевую ампулу (бокс) 2, но не запаивают ее, а закрывают пришлифованной кварцевой крышкой 7, обеспечивающей небольшой зазор (Рисунок 6.3.3). Ампулу помещают у выходного отверстия 6 кварцевой трубы 1 диффузионной печи с нагревателем 3, через которую продувают инертный газ. Газ уносит следы кислорода и влаги из ампулы, после чего ее закрывают крышкой и проводят диффузионный процесс. По сравнению с диффузией в открытой трубе бокс-метод менее чувствителен к скорости потока газа-носителя и позволяет в более широких пределах регулировать поверхностную концентрацию примеси. Преимуществом перед ампульным способом является возможность многократного применения кварцевой ампулы. ^ Преимущества ионной имплантации позволили этому методу выйти за рамки исследовательских лабораторий и шагнуть, в промышленность. Ионная имплантация позволяет не только существенно повысить эффективность, снизить себестоимость и процент брака при производстве некоторых существующих типов полупроводниковых приборов, но и создавать принципиально новые приборы. Например, при создании высокоомных резисторов обычной технологией возникали трудности из-за больших размеров этих резисторов. Если же использовать ионное легирование, то можно довольно легко получить высокоомные слои с небольшими размерами. В последнее время ,применяя ионную технологию ,были получены, а затем качественно улучшены варакторы, IMPATT -диоды, МОП-транзисторы. Наряду с легированием полупроводников, ионные лучи находят применение и для осуществления травления материалов. В основу положен факт приблизительного равенства объемов веществ различной природы, распыляемых частицами малых энергий. Следовательно, распыление пленки фоторезиста и материала в окнах этой пленки происходит примерно с одной скоростью. В данном процессе полностью отсутствует подтрав фигур травления и потому очень точно воспроизводится рисунок фоторезиста. Новые возможности применения ионного луча, такие ,как ионолитография, селективное осаждение пленок из ионных пучков и др., открывает широкие перспективы ионнолучевой технологии для создания полупроводниковых приборов и ИС. Технологическое оборудование, использующее ионные лучи, различается по своему конструктивному решению, мощности, степени автоматизации, однако все это основано на одинаковом принципе действия - ионизация атомов, сепарация и ускорение ионов до необходимой энергии и внедрение их в образцы. ^ Автомат ионнолучевого легирования "Иолла-2" имеет следующие основные технические данные: энергия ионов - 10-75 кэВ; максимальная температура мишени- 600°С; предельное давление в рабочей камере - I-T0 мм рт.ст.; рабочее давление в источнике ионов - 10-10 мм рт.ст.; угол отклонения ионного пучка - 60°; точность измерения введенной дозы - 5%; плотность тока пучка ионов - до 10 мкА/мм; размер обрабатываемых пластин - 15x15 тг Принципиальная схема автомата представ; на рисунке 1. Схема полностью соответствует рассмотренному принципу построения ионнолучевых установок. Смесь газа, содержащая легирующий элемент, вводится в источник ионов (ИИ) в ионизационную камеру, где молекулы газа ионизуются электронами, эмиттируемыми катодом. Магнитное поле постоянного магнита обеспечивает большую степень ионизации. Образовавшиеся положительно заряженные ионы вытягиваются из щели ионизатора напряжением I-5 кВ и предварительно ускоренные поступают в камеру масс-сепаратора, а оттуда в рабочую камеру. Щелевая диафрагма, которая располагается перед входом в камеру, пропускает отсепнрированный пучок ионов на образец. Контроль тока пучка осуществляется тонким зондом, помещенным на его пути, а весь ток можно определить с помощью заслонки, которая препятствует пучку попадать на образец. Зонд регистрирует порядка 1% полного тока. ![]() Рисунок 6.4.1 Принципиальная схема ионнолучевого автомата “Иолла-2”. Рабочая камера сконструирована таким образом, чтобы обеспечить автоматическую работу установки. Во-первых,предусмотрена загрузка и выгрузка образцов без разгерметизации объема рабочей камеры. Для этого служат шлюзовые устройства загрузки (ШЗ) и выгрузки (ШВ) и механизм захвата образцов для последующей его обработки. Для равномерной обработки по всей площади образца предусмотрено сканирование, которое осуществляется механической разверткой обрабатываемого предмета с помощью механизма сканирования (Рисунок 6.4.2). Поскольку обрабатываемая под ложка находится под высоким потенциалом (до 80 кВ), весь механизм должен быть надежно изолирован от корпуса. Поэтому к фланцу I он крепится на высоковольтном керамическом держателе-вводе, а привод механизмов от двигателя 8 осуществляется через диэлектрические оси 10. На керамическом стакане закреплен механизм вилки 4, где размещается оправка с подложкой и подогреватель подложки 5. Механизм качания вилки включает храповое колесо 13,собачки 12,15, кулачок 14, продольную направляющую 6. Ведомый вал 7, приводящийся в движение двигателем 8 через вильоновское уплотнение 9 и ось 10, приводит в движение вилку, которая совершает колебательное движение вместе с валом и поступательное относительно направляющих, жестко связанных с валом, что обеспечивает равномерную обработку подложки ионным лучом. Управление работой двигателя осуществляется с помощью контактной группы 3 и блока микропереключателей II с кулачками 16. После окончания легирования вилка поворачивается и выгружает оправку с образцом кассету шлюза выгрузки и переходит к шлюзу загрузки для приемки нового образца. Загруженный образец поворачивается в положение для прогрева и легирования. Так повторяемся цикл, пока вся серия загруженных заготовок не будет пролегирована. Автомат останавливается и производится смена кассет в шлюзах. ![]() Рисунок 6.4.2. Механизм сканирования: I-фланец; 2-высоковольтный керамический держатель; 3-контактная группа; 4-вилочный держатель образцов; 5-раддационннй подогреватель образцов; 6- продольная направляющая; 7-ведомый вал; 8-двигатель; 9-вильсоновское уплотнение рабочей оси; 10-рабочая ось; II-блок микропереключателей; 12-собачка; 13-храповое колесо; 14-кулачок; 15-собачка. ^ Для нормальной работы источника ионов требуется создавать достаточно высокий вакуум. Поскольку в лоточнике напускается газ, то это приводит к необходимости создавать отдельную мощную линию откачки ионного источника. Вакуумная схема установки приведена на рисунке 3.Она состоит из линии предварительного разряжения и линии выcокого вакуума. Предварительное разряжение создается механическим насосом I (BH6-2) с производительностью 5 л/сек. Откачка на высокий вакуум осуществляется диффузионным насосом H5C-MI (ДНИ и ДНП). Откачка рабочей камеры и источника ионов производится через электромагнитные краны ЭМ1 и ЭМ2 и форвакуумную ловушку ФЛ-I, которая необходима для предотвращения попадания паров масла их механического насоса в откачную систему. Электромагнитные краны ЭМЗ и ЭМ4 позволяют откачивать шлюзы загрузки (ШЗ) и выгрузки (ШВ) и систему напуска газов на форвакуум при включенных диффузионных насосах. С помощью: крана ЭМ-5 проводится разгерметизация шлюзов. Напуск газа в источник ионов осуществляется с помощью натекателей HI и Н2. Высокий вакуум создается диффузионными насосами со скоростью откачки 500 л/сек при давлении 0.001 мм pт.ст. Предельное давление 2-5*10(-7) мм рт.ст. обеспечивается этими насосами благодаря использованию масла с высокой упругостью паров. Вакуум контролируется известными методами. Давление в форвакуумной части и в системе напуска измеряется термопарными манометрами ПМТ-4М, а высокий вакуум ионизационным манометром ПМИ-2. Для предотвращения попадания паров масла в рабочий объем у насосов ДНП и ДНИ имеются водяные ловушки Л1 и Л2. ^ Масочные методы. Метод свободных масок. Классификация масок и методы получения. Метод контактных масок. Пример формирования рисунка. Литографические методы. Фотолитография. Определение. Классификация. Контактная фотолитография. Фоторезисты (ФР), виды, требования к ним, методы нанесения. Фотошаблоны (ФШ). Виды, требования к материалам, технология получения ФШ. Типовой технологический процесс контактной ФЛГ. Проекционная ФЛГ. Достоинства и недостатки. Пошаговое экспонирование. ФЛГ с микрозазором. Сопоставление характеристики методов ФЛГ. Электрополитография.Сканирующая и проекционная. Проецирование в уменьшенном масштабе. Резисты для субмикронной литографии. Рентгенолитиграфия. Шаблоны для нее. Достоинства реальные и потенциальные. Проблемы. Ионнолитография. Суть и основные преимущества. Сравнительные характеристики методов литографии. Формирование рисунка элементов ИС. «Фрезерованием» остросфокусированным потоком частфд: электронов, ионов, нейтральных частиц. Излучение оптического квантового генератора. 7.1 Масочные методы. Метод свободных масок. Классификация масок и методы получения. Метод контактных масок. Пример формирования рисунка. Литографические методы. Фотолитография. Определение. Классификация. Литография — это процесс формирования в актиночувствительном слое, нанесенном на поверхность подложек, рельефного рисунка, повторяющего топологию полупроводниковых приборов или ИМС, и последующего переноса этого рисунка на подложки. Актиночувствительным называется слой, который изменяет свои свойства (растворимость, химическую стойкость) под действием актиничного излучения (например, ультрафиолетового света или потока электронов). Литографические процессы позволяют! получать на поверхности окисленных полупроводниковых подложек свободные от слоя оксида области, задающие конфигурацию полупроводниковых приборов и -моментов ИМС, в которые проводится локальная диффузия примесей для создания p-n-переходов; формировать межсоединения элементов ИМС; создавать технологические маски из резистов, обеспечивающие избирательное маскирование при ионном легировании. Широкое применение литографии обусловлено следующими достоинствами: высокой воспроизводимостью результатов и гибкостью технологии, что позволяет легко переходить от одной топологии структур к другой сменой шаблонов; высокой разрешающей способностью актиничных резистов; универсальностью процессов, обеспечивающей их применение для самых разнообразных целей (травления, легирования, осаждения); высокой производительностью, обусловленной групповыми методами обработки. Процесс литографии состоит из двух основных стадий: формирования необходимого рисунка элементов в слое актиночувствительного вещества (резиста) его эспонированием и проявлением; травления нижележащего технологического слоя (диэлектрика, металла) через сформированную топологическую маску или непосредственного использования слоя резиста в качестве топологической маски при ионном легировании. В качестве диэлектрических слоев обычно служат пленки диоксида SiO2 и нитрида Si3N4 кремния, а межсоединений — пленки некоторых металлов. Все пленки называют технологическим слоем. В зависимости от длины волны используемого излучения применяют следующие методы литографии: фотолитографию (длина волны актиничного ультрафиолетового излучения λ =250 … 440 нм); рентгенолитографию (длина волны рентгеновского излучения λ =0,5 … 2 нм); электронолитографию (поток электронов, имеющих энергию 10 - 100 КэВ или длину волны λ = 0,05 нм); ионолитографию (длина волны излучения ионов λ = 0,05 … 0,1 нм). В зависимости от способа переноса изображения методы литографии могут быть контактными и проекционными, а также непосредственной генерации всего изображения или мультипликации единичного изображения. В свою очередь, проекционные методы могут быть без изменения масштаба переносимого изображения (Ml : 1) и с уменьшением его масштаба (М 10 : 1;М 5 : 1).Классификация методов литографии приведена на рисунке 7.1.1. В зависимости от типа используемого р е з и с та (негативный или позитивный) методы литографии по характеру переноса изображения делятся на негативные и позитивные (Рисунок 7.1.2). Литография является прецизионным процессом, т. е. точность создаваемых рисунков элементов должна быть в пределах долей микрометра (0,3 - 0,5 мкм). Кроме того, различные методы литографии должны обеспечивать получение изображений необходимых размеров любой геометрической сложности, высокую воспроизводимость изображений в пределах полупроводниковых кристаллов и по рабочему полю подложек, а также низкий уровень дефектности слоя сформированных масок. В ином случае значительно снижается выход годных изделий. Для выполнения этих требований необходимы: применение машинных методов проектирования и автоматизации процессов изготовления шаблонов; повышение воспроизведения размеров элементов, точности совмещения и использование низкодефектных методов формирования масок; ![]() Рисунок 7.1.1. Классификация методов литографии ![]() Рисунок 7.1.2. Формирование рельефа изображения элементов (а - в) при использовании негативного (7) и позитивного (II) фоторезистов: 1 - ультрафиолетовое излучение, 2, 3 - стеклянный фотошаблон и нанесенная на него маска, 4 - слой фоторезиста на кремниевой подложке, 5 — технологический слой для формирования рельефа рисунка, 6 - кремниевая подложка внедрение оптико-механического, химического и контрольного оборудования, обеспечивающего создание рисунков элементов с заданными точностью и разрешающей способностью; применение новых технологических процессов генерации и переноса изображения с использованием контактных, проекционных методов фотолитографии, голографии, электроннолучевой и лазерной технологии; разработка технологических процессов прямого получения рисунка элементов микросхем, минуя применение защитных покрытий, развитие элионных процессов. Литографические процессы непрерывно совершенствуются: повышается их прецизионность и разрешающая способность, снижается уровень дефектности и увеличивается производительность. 7.2 Контактная фотолитография |