Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии»





Скачать 2.83 Mb.
Название Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии»
страница 4/11
Дата 30.06.2013
Размер 2.83 Mb.
Тип Рабочая программа
1   2   3   4   5   6   7   8   9   10   11

Фотолитография — это сложный технологический процесс, осно­ванный на использовании необратимых фотохимических явлений, про­исходящих в нанесенном на подложки слое фоторезиста при его обработ­ке ультрафиолетовым излучением через маску (фотошаблон).

Технологический процесс фотолитографии можно разделить на три стадии:

формирование фоторезистивного слоя (обработка подло­жек для их очистки и повышения адгезионной способности, нанесение фоторезиста и его сушка);

формирование защитного рельефа в слое фоторезиста (совмещение, экспонирование, проявление и сушка слоя фо­торезиста, т. е. его задубливание);

создание рельефного изображения на подложке (травление технологического слоя — пленки SiO2, Si3N4, металла, удале­ние слоя фоторезиста, контроль).

Последовательность выполнения основных операций при фотолитографии показана на рисунке 3.

Поверхность подложек предварительно очищают, чтобы обеспечить их высокую смачиваемость и адгезию фоторезиста, а также исключить посторонние включения. Затем на подложки тонким слоем наносят слой фоторезиста (светочувствительную полимерную композицию) и сушат его для удаления раствори­теля.

Совмещение фотошаблона с подложкой и экспонирование выполняют на одной установке. Цель операции совмещения — совпадение рисунка фотошаблона с нанесенным на предыдущей операции на подложку рисунком. Далее слой фоторезиста экспонируют — подвергают воздействию ультрафиолетового





Рисунок 7.2.1. Последовательность выполнения основных операций при фото­литографии


излучения через фотошаблон. В результате этого рисунок с фотошаблона переносится на слой фоторезиста.

При проявлении слоя фоторезиста отдельные его участки вымываются и на подложке при использовании позитивного фоторезиста остаются неэкспонированные (незасвеченные) участки, а если применялся негативный фоторезист, то экспонирован­ные. Затем слой фоторезиста термообрабатывают при повышен­ной температуре, т. е. задубливают, вследствие чего происходит его частичная полимеризация и повышается стойкость к травителю.

Заканчивается процесс фотолитографии травлением неза­щищенных фоторезистом участков подложки, созданием рель­ефного рисунка на технологическом слое и удалением остат­ков фоторезиста. Таким образом, слой фоторезиста служит для передачи рисунка с фотошаблона на технологический слой.

^ ПОЗИТИВНЫЕ И НЕГАТИВНЫЕ ФОТОРЕЗИСТЫ

Фоторезисты — это светочувствительные материалы с изменяю­щейся по действием света растворимостью, устойчивые к воздействию травителей и применяемые для переноса изображения на подложку.

Фоторезисты являются многокомпонентными мономерно-полимерными материалами, в состав которых входят: свето­чувствительные (поливинилциннаматы — в негативные фото­резисты и нафтохинондиазиды - в позитивные) и пленко­образующие (чаще всего это различные фенолформальдегид-ные смолы, резольные и новолачные смолы) вещества, а также растворители (кетоны, ароматические углеводороды, спирты, диоксан, циклогексан, диметилформамид и др.).

В процессе фотолитографии фоторезисты выполняют две функции: с одной стороны, являясь светочувствительными материалами, они позволяют создавать рельеф рисунка элементов, а с другой, обладая резистивными свойствами, защищают технологический слой при трав­лении.

Как уже отмечалось, рельеф образуется в результате того, то под действием актиничного излучения, падающего через фотошаблон на определенные участки слоя фоторезиста, он изменяет свои первоначальные свойства. Для большинства фоторезистов актиничным является ультрафиолетовое излу­чение. .

В основе создания рельефа в пленке негативных фоторезис­тов лежит использование фотохимической реакции фотопри­соединения - фотополимеризацш, а в пленке позитивных фоторезистов - реакции фоторазложения - фотолиза.

При фотополимеризации происходит поперечная сшивк; молекул полимера, в результате чего они укрупняются. Поел* экспонирования под действием актиничного излучения изме няется структура молекул полимера, они становятся трехмер ными и их химическая стойкость увеличивается.

При фотолизе в фоторезисте под воздействием актиничного излучения у молекул полимера происходит обрыв слабых связей и образуются молекулы менее сложной структуры. Таким образом, фотолиз является процессом, противоположных фотополимеризации. Получающийся в результате фотолиз, полимер обладает пониженной химической стойкостью.

Многие полимерные вещества, из которых изготовляю: фоторезисты, содержат функциональные группы, поглощающие свет в ультрафиолетовой области спектра. Собственная светочувствительность полимера при введении в него специальные добавок — стабилизаторов и сенсибилизаторов* может изменяться в широких пределах. Одна и та же добавка для различных полимеров может служить и стабилизатором и сенсибили­затором. Объясняется это тем, что эффект действия добавок определяется не только их химическим составом, но и энерге­тическим взаимодействием с исходным полимером.

В зависимости от характера протекающих в фоторезисте фотохимических реакций определяется и тин фоторезиста — позитивный или негативный.

Негативные фоторезисты под действием актиничного излучения образуют защищенные участки релье­фа. После термообработки - задубливания - в результате ре­акции фотополимеризации освещенные при экспонировании участки не растворяются в проявителе и остаются на поверх­ности подложки. При этом рельеф представляет собой негатив­ное изображение элементов фотошаблона.

В качестве негативных фоторезистов применяют составы на основе сложного эфира поливинилового спирта



и коричной кислоты С6Н5—СН = СН—СООН . Эти составы называют поливинилциннаматами (ПВЦ) и их формула имеет вид R1 — [O — R2]n , где R1 — макромолекула поли­винилового спирта, содержащая большое количество атомов; R2 - светочувствительные циннамоильные группы, представ­ляющие собой продукты коричной кислоты.

Молекулы ПВЦ представляют собой длинные спирали, состоящие из десятков тысяч атомов (молекулярная масса до 200 тыс. ед.). При поглощении фотонов ультрафиолетового из­лучения в результате фотохимической реакции фотополиме­ризации происходит разрыв слабой двойной связи — С = С -циннамоильной группы и образовавшиеся свободные связи сшивают молекулы полимера в химически стойкую трехмер­ную структуру.

В зависимости от способов получения и свойств исходных продуктов фоторезисты на основе ПВЦ могут обладать раз­личными характеристиками по светочувствительности, разре­шающей способности, кислотостойкое и др.

Фоторезисты на основе ПВЦ представляют собой белый порошок, растворяющийся в органических растворителях (смесях толуола с хлорбензолом, ацетата этиленгликоля с метаксилолом и др.). Проявителями для этих фоторезистов служит трихлорэтилен или его смесь с изопропиловым спир­том. Время проявления 0,5 — 1 мин. Фоторезисты на основе ПВЦ имеют удовлетворительную кислотостойкость: они не выдерживают воздействия концентрированной плавиковой кис­лоты, но устойчивы к травителям с небольшим ее содержанием.

Повышенной кислотостойкостью обладают негативные фо­торезисты на основе изопропилового каучука, циклокаучука и других каучуков с различными добавками. Так как сами каучуки не являются светочувствительными веществами, в состав фоторезистов вводят светочувствительные диазосоеди-нения — сенсибилизаторы. Под действием света молекула диа-зосоединения разлагается с потерей молекулы азота, образуя новые вещества — нитрены, которые вступают в реакцию с мак­ромолекулами каучука. В результате образуется стойкая трех­мерная структура. Растворителем для таких фоторезистов служит смесь ксилола с толуолом, а в качестве проявителей исполь­зуются составы на основе ксилола^ толуола, уайт-спирита.

Примерами негативных фоторезистов являются ФН-11, ФН-11К, ФН-4ТВ, ФН-ЗТ и ФН-106.

Негативные фоторезисты чувствительны к ультрафиолето­вому излучению в диапазоне длин волн 260 - 320 нм. При добавлении стабилизаторов светочувствительность увеличива­ется в 100 — 300 раз. Разрешающая способность негативных фоторезистов 100 — 300 лин/мм при толщине слоя от 0,3 до 0,5 мкм. Современные негативные фоторезисты обеспечи­вают формирование микроизображений с шириной линий 2 —■ 3 мкм.

Позитивные фоторезисты, наоборот, передают один к одному рисунок фотошаблона, т. е. рельеф повторяет

конфигурацию его непрозрачных элементов. Актиничное из­лучение так изменяет свойства позитивного фоторезиста, что при обработке в проявителе экспонированные участки слоя раз­рушаются и вымываются. В позитивных фоторезистах при освещении происходит распад молекул полимера и уменьшается их химическая стойкость.

В качестве позитивных фоторезистов используют смеси сульфоэфиров нафтохинондиазидов (НХД) с фенолформаль-дегидными смолами (новолачными или резольными) в орга­нических растворителях. Светочувствительной основой такого фоторезиста является НХД, а смола играет роль кислотостой­кого полимера. При экспонировании в результате фотохими­ческих реакций фотолиза гидрофобные производные НХД разрушаются и становятся гидрофильными, приобретая спо­собность растворяться в слабых водных растворах щелочей, которые и являются проявителем для позитивных фоторезис­тов.


Позитивные фоторезисты и режимы их обработки Та б л и ц а 7.2.1.

Марка

Область применения

Растворитель

Режим нанесения, об/мин

Толщина слоя, мкм

Режим сушки, С

Проявитель

ФП-383

Производство приборов, ИМС и полупроводниковых печатных плат с использованием контакт­ного экспонирования и плазмо-химического травления

Диоксан

2500-3000

0,9-1,1

95-105

2%-ный Na3PO4

ФП-РН-7

То же

ДМФА, МЦА

2500-3000

0,7-1,1

95-105

0,5%-ный КОН

ФП-РН-27В

То же

ДМФА, МЦА

2500-3000

1,1-1,4

95-105

0,6%-ный КОН

ФП-051Ш

Производство фотошаблонов контактной фотолитографией

МЦА

2000-2500

0,8-1,0

90-95

0,6%-ный КОН

ФП-051Т

Фотолитография при изготовле­нии БИС и СБИС с использова­нием контактного экспонирова­ния, жидкостного и плазмохи-мического травления

МЦА

2000-2500

1,0-1,5

95-105

0,6%-ный КОН

ФП-051К

То же

ЭЦА, ДМФА

2500-3000

2,1-2,5

95-105

0,6%-ный КОН

ФП-051 МК

Прецизионная фотолитография при изготовлении БИС и СБИС с использованием проекционно­го экспонирования

ЭЦА, диглим

3500-4000

1,6-1,8

100-110

0,6%-ный КОН

ПП-051 К

ФП-25

Изготовление масок

Диоксан

1500-2000

6,0-8,0

90-100

0,5%-ный КОН

Примечани е. ДМФА - диметилформамид; МЦА — метилцеллозольвацетат; ЭЦА — этилцеллозольвацетат.


Растворителями позитивных фоторезистов являются спир­ты, кетоны, ароматические углеводороды, диоксан, ксилол или их смеси.

Позитивные фоторезисты на основе НХД чувствительны к ультрафиолетовому излучению в диапазоне длин волн 250 — 450 нм. Разрешающая способность их выше, чем негативных фоторезистов (500 — 600 лин/мм при толщине слоя 1 мкм), что позволяет формировать микроизображения с шириной линий 1—2 мкм. Позитивные фоторезисты обладают высокой кислотостойкостыо; выдерживают действие концентрирован­ных плавиковой и азотной кислот.

Основные позитивные фоторезисты и режимы их обработ­ки приведены В таблице 1.


7.3.Фоторезисты (ФР), виды, требования к ним, методы нанесения

Основными параметрами фоторезистов являются свето­чувствительность, разрешающая способность, кислотостойкость, адгезия к подложке и технологичность.

СветочувствительностьS, см2 /(Вт • с),- это величина, обрат­ная экспозиции, т. е. количеству световой энергии, необходи­мой для облучения фоторезиста, чтобы перевести его в нераст­воримое (негативный) или растворимое (позитивный) сос­тояние :


(7.3.1)


где Н - экспозиция Вт • с/см ; Е — энергооблученноеть, Вт/см2; t — длительность облучения, с,

Точную характеристику светочувствительности можно полу­чить, учитывая не только процесс экспонирования, но и прояв­ления. Так как проявитель химически взаимодействует с экспо­нированными и неэкспонированными участками слоя фоторе­зиста, процесс проявления оказывает прямое влияние на его светочувствительность. В прямой зависимости от процесса про­явления, а следовательно, и светочувствительности фоторезис­та находится качество формируемого в его слое при проявле­нии рисунка элементов.

Таким образом, критерием светочувствительности фоторезиста служит четкость рельефа рисунка в его слое после проведения процес­сов экспонирования и проявления. При этом рельеф рисунка должен иметь резко очерченную границу между областями удаленного и остав­шегося на поверхности подложки слоя фоторезиста.

Критерием светочувствительности негативных фоторезистов является образование после экспонирования и проявления на поверхности подложки локальных полимеризованных участ­ков — рельефа рисунка, т. е. полнота прохождения фотохимичес­кой реакции полимеризации (сшивки) молекул основы фо­торезиста.

Критерием светочувствительности позитивных фоторезистов является полнота разрушения и удаления (реакция фото­лиза) с поверхности подложки локальных участков слоя фото­резиста после экспонирования и проявления и образование рель­ефного рисунка.

Фоторезисты характеризуются также пороговой светочув­ствительностью Sn = 1/H1, определяемой началом фотохими­ческой реакции.

Светочувствительность и пороговая светочувствительность фоторезиста зависят от толщины его слоя, а также состава и концентрации проявителя. Поэтому, говоря о значении светочув­ствительности и пороговой светочувствительности, учитывают конкретные условия проведения процесса фотолитографии. Определяют светочувствительность экспериментально, исследуя скорость проявления фоторезиста, которая зависит от степени его облучения.

^ Разрешающая способность - это один из самых важных параметров фоторезистов, характеризующий их способность к созданию рельефа рисунка с минимальными размерами эле­ментов. Разрешающая способность фоторезиста определяется числом линий равной ширины, разделенных промежутками такой же ширины и умещающихся в одном миллиметре.

Для определения разрешающей способности фоторезис­тов используют штриховые миры, представляющие собой стеклянные пластины с нанесенными на их поверхность штриха­ми шириной от одного до нескольких десятков микрометров. Разрешающую способность определяют проводя экспонирова­ние подложки, покрытой слоем фоторезиста, через штрихо­вую миру, которую используют в качестве фотошаблона. После проявления выделяется участок с различными штрихами наи­меньшей ширины, которые и характеризуют разрешающую способность данного фоторезиста.

Следует различать разрешенную способность фоторезиста и разре­шающую способность процесса фотолитографии, которая зависит от режимов травления. На практике необходимо ориентироваться на разре­шающую способность фотолитографического процесса.

При эпитаксиально-планарной технологии разрешающая спо­собность фотолитографии — это предельное количество линий в одном миллиметре, вытравленных в слое диоксида крем­ния толщиной 0,5 — 1,0 мкм через промежутки равной шири­ны. Разрешающая способность лучших современных фоторезис­тов достигает 1500 — 2000 линий/мм. Разрешающая способ­ность отечественных фоторезистов ФП-383 и ФП-РН-7 составляет 400 — 500 линий/мм, что позволяет получать контактной и проекционной фотолитографией рисунки элементов, соответ­ственно имеющие размеры 1,25 — 1,5 и 0,5 — 0,6 мкм.

Кислотоетойкостъ — это способность слоя фоторезиста защищать поверхность подложки от воздействия кислотного травителя. Критерием кислотостойкости является время, в те­чение которого фоторезист выдерживает действие травителя до момента появления таких дефектов, как частичное разруше­ние, отслаивание от подложки, локальное точечное расстрав-ливание слоя или подтравливание его на границе с подложкой,

Стойкость фоторезиста к химическим воздействиям зави­сит не только от состава, но и от толщины и состояния его слоя. Поэтому кислотостойкость оценивают фактором травления К = h/х.,(где h - глубина травления; х - боковое подтравли­вание) .

Таким образом, чем меньше боковое подтравливание при заданной глубине травления, тем выше кислотостойкость фоторезиста. Боковое подтравливание характеризуется клином травления.

Адгезия - это способность слоя фоторезиста препятствовать проникновению травителя к подложке по периметру создавае­мого рельефа рисунка элементов. Критерием адгезии является время отрыва слоя фоторезиста заданных размеров от подлож­ки в ламинарном потоке проявителя. В большинстве случаев адгезию считают удовлетворительной, если слой фоторезиста

20x20 мкм2 отрывается за 20 мин. Об адгезии фоторезиста к подложке можно судить по углу смачивания, т. е. состоянию поверхности подложки.

Стабильность свойств фоторезистов характеризуется их сроком службы при определенных условиях хранения и эксплу­атации и обеспечение ее является одной из важнейших проблем производства изделий микроэлектроники.^ БРАБОТКА ПОВЕРХНОСТИ ПОДЛОЖЕК

Качество процесса фотолитографии во многом определяется меха­ническим и физико-химическим состоянием поверхности подложек.

Механическое состояние поверхности подложек влияет на точность получения элементов рисун­ка, поэтому любые неровности, микробугорки, впадины, цара­пины и риски приводят к их искажению. Кроме того, при нане­сении слоя фоторезиста эти дефекты вызывают появление пу­зырьков или проколов в слое фоторезиста.

Необходимое качество поверхности подложек обеспечива­ется на начальных стадиях их изготовления механической обра­боткой: резкой слитков на пластины, шлифовкой и полировкой пластин, в результате которой их поверхность доводится до зеркального блеска и приобретает идеальную плоскостность и плоскопараллельность.

Физико-химическое состояние поверхнос­ти подложек влияет на ее смачиваемость и адгезию фоторезис­та. Поэтому на рабочих поверхностях подложек не должно быть инородных частиц, а также адсорбированных атомов и ионов жидкостей и газов. Так как большинство фоторезистов содер­жит в своей основе полимеры, обладающие гидрофобными свойствами, то и поверхность подложек должна быть гидро­фобной.

Критерием оценки состояния поверхности подложки может служить краевой угол ее смачивания каплей деионизованной воды. Если капля воды растекается по поверхности подложки, т. е. ее угол смачивания менее 40 °, такую поверхность называ­ют гидрофильной. Поверхность, на которой капля воды не рас­текается и образует угол смачивания более 90 °, называют гидрофобной.

При фотолитографии необходимо, чтобы поверхность подложек была гидрофильна к фоторезисту и гидрофобна к травителю, тогда выт­равленный рисунок будет точно повторять рисунок фотошаблона.

Перед нанесением слоя фоторезиста или какой-либо плен­ки полупроводниковые подложки для удаления органических загрязнений обрабатывают в химических реактивах, а затем подвергают гидромеханической отмывке (Рисунок 7.3.1,а, б).




Рисунок 7.3.1. Схемы гидромеханической отмывки подложек цилиндри­ческой (а) и конической (б) щетками:

1 - форсунка, 2 - щетки, 3 - подложка


Для формирования полупроводниковых структур исполь­зуют пленки полупроводников (Si, Ge, GaAs), диэлектриков (оксида SiO2 и нитрида Si3N7.3.1 кремния, примесно-силикатных стекол) и металлов (Al, V, W, Ti, Аи), а также силицидов и оксидов тугоплавких металлов.

Поверхность подложек с выращенными термическим окис­лением пленками SiO2 сразу после образования пленки гидрофобна. Поэтому рекомендуется непосредственно после окис­ления, не превышая межоперационное время более 1 ч, пере­давать подложки на фотолитографию. Через несколько часов поверхность подложек с пленкой SiO2 становится гидрофиль­ной, на ней адсорбируются молекулы воды из атмосферы, угол смачивания уменьшается до 20 - 30 ° и адгезия фоторезиста падает, что приводит к браку. Для придания поверхности таких подложек гидрофобных свойств их термообрабатывают при 700 — 800 ° С в сухом инертном газе или в вакууме.

Если слой фоторезиста наносят на пленку примесно-силикат-ного стекла, следует иметь в виду, что поверхность боросиликат-ного стекла гидрофобна и аналогична по поведению пленке SiO2 а фосфоросиликатного стекла гидрофильна (угол смачи­вания не превышает 15 °). Гидрофобные свойства поверхности фосфоросиликатного стекла придают термообработкой при 100 — 500 °С в течение 1 ч в сухом инертном газе или в ваку­уме. Режим термообработки выбирают в зависимости от тех­нологии изготовления и конструкции микроэлектронного изделия. Гидрофобность силикатных стекол повышают также обработкой их в трихлорэтилене или ксилоле.

Характеристики поверхности пленок Al, V, W, Ti и Аu наносимых вакуумным распылением, зависят от режима про­ведения процесса и смачиваемости подложек. Перед фотоли­тографией пленки обязательно обезжиривают в растворителях.

Эффективным методом повышения адгезии фоторезиста к пленке является ее обработка в парах специальных веществ — адгезивов, придающих поверхности гидрофобные свойства. Наиболее распространенным адгезивом является гексаметил-дисилазан.

Нанесение слоя фоторезиста. Нанесенный на предваритель­но подготовленную поверхность подложек слой фоторезиста должен быть однородным по толщине по всему их полю, без проколов, царапин (т. е. быть сплошным) и иметь хорошую адгезию.

Наносят слой фоторезиста на подложки в обеспыленной сре­де, соблюдая технологические режимы. Используемый фото­резист должен соответствовать паспортным данным. Перед употреблением его необходимо профильтровать через специаль­ные фильтры, а в особо ответственных случаях (при производ­стве БИС) обработать на центрифуге при частоте вращения 10 - 20 тыс. об/мин в течение нескольких часов. Это делают для того, чтобы удалить из фоторезиста инородные микрочас­тицы размером менее 1 мкм, которые могут привести к бра­ку фоторезистивного слоя. Кроме того, необходимо проверить вязкость фоторезиста и довести ее до нормы.

Для нанесения слоя фоторезиста на подложки используют методы центрифугирования, пульверизации, электростатичес­кий, окунания и полива. Кроме того, применяют накатку пленки сухого фоторезиста.

Методом центрифугирования (Рисунок 7.3.2), наиболее широко используемым в полупроводниковой техно­логии, на несложном оборудовании наносят слои фоторезиста, толщина которых колеблется в пределах ± 10 %. При этом методе на подложку 2, которая устанавливается на столике 3 центрифуги и удерживается на нем вакуумным присосом, фоторезист подается капельницей-дозатором 1. Когда столик приводится во вращение, фоторезист растекается тонким слоем по поверхности подложки, а его излишки сбрасываются с нее и стекают по кожуху 4. При вращении центрифуги с большой частотой происходит испарение растворителя и вязкость фото­резиста быстро возрастает.





Рисунок 7.3.2 (cлева). Установка несения слоя фоторезиста центрифугирова­нием:

1 — дозатор (капельница), 2 — подложка, 3 - столик, 4 - кожух для сбора избытка фо­торезиста, 5 - вакуумные уп­лотнители, 6 - электродвига­тель, 7 - трубопровод к ва­куумному насосу


Рисунок 7.3.3(справа). Зависимость толщины слоя фото­резиста от частоты вращения центрифуги при различных коэффициентах его вяз­кости:

1 - v 0,05 см/с, 2 - v = 0,04 см/с, 3 - v = 0,02 см/с


Наносимые центрифугированием слои фоторезиста могут иметь дефекты в виде "комет", образующиеся, если на поверх­ности подложек имелись остаточные загрязнения или фоторезист был плохо отфильтрован. Такие дефекты выглядят, как направ­ленные от центра локальные утолщения или разрывы слоя фоторезиста.

Полуавтомат для нанесения слоя фоторезиста центрифуги­рованием состоит из блоков центрифуг и дозаторов, блока управления, а также блока подачи и приема подложек и выпол­нен в виду двух треков. В блоке центрифуг имеется электро­двигатель малой инерционности, частота вращения которого контролируется специальным электронным блоком. Подложки удерживаются на столиках центрифуг вакуумным присосом, создаваемым системой вакуумной откачки. Блок дозаторов укреплен на задней стенке полуавтомата. Дозирование фоторе­зиста ведется с помощью электроиневмоклапанов, а подача осуществляется под давлением азота. Блок управления обес­печивает согласование работы всех блоков полуавтомата.

Полуавтомат предназначен для одновременного нанесения слоя фоторезиста по двум трекам, на которые загружаются стандартные кассеты с 25 подложками. После нанесения фото­резиста подложки поступают в разгрузочную кассету или прохо­дят по треку на сушку в конвейерную печь.

Достоинствами методами центрифугирования являются его простота, отработанность и удовлетворительная производитель­ность оборудования, а также возможность нанесения тонких слоев фоторезиста с небольшим разбросом по толщине. Недос­татки этого метода — трудность нанесения толстых слоев фото­резиста (более 3 мкм), необходимость тщательного контроля его коэффициента вязкости и режимов работы центрифуги.

Метод пульверизации (Рисунок 7.3.4), являющийся весьма перспективным, основан на нанесении слоя фоторезиста в виде аэрозоля с помощью форсунки, действующей под дав­лением сжатого воздуха или инертного газа. Подложки распо­лагаются на расстоянии в несколько сантиметров от форсунки, и фоторезист, осаждаясь в виде капель, покрывает их сплош­ным слоем. Метод пульверизации позволяет в автоматическом режиме вести групповую обработку подложек. При этом тол­щина слоя фоторезиста составляет от 0,3 до 20 мкм с точностью не хуже 5 %.

Достоинствами метода пульверизации являются: возмож­ность изменения толщины слоя фоторезиста в широких преде­лах: однородность слоев по толщине; отсутствие утолщений по краям подложек; нанесение фоторезиста на профилирован­ные подложки (в малейшие углубления и отверстия): сравнительно малый расход фоторезиста; высокая производитель­ность и автоматизация процесса; хорошая адгезия слоя к под­ложкам (лучшая, чем при центрифугировании).

Недостатки этого метода состоят в том, что при его исполь­зовании необходимо специально подбирать растворители, так как слой фоторезиста не должен стекать по подложкам. Кроме того, следует тщательно очищать фоторезист и используемый для пульверизации газ.

Основными элементами установки для нанесения слоя фоторезиста .пульверизацией являются форсунка-пульверизатор и стол, на котором закрепляют подложки. Для равномерного покрытия подложек слоем фоторезиста стол и форсунка переме­щаются в двух взаимно перпендикулярных направлениях.




Рисунок 7.3.4. Нанесение слоя фоторезиста пульверизацией:

1 — область разрежения, 2 — сопло, 3 — форсунка, 4 — регули­рующая игла, 5 — распыляющий газ, 6 - подача фоторезиста


При электростатическом методе (Рисунок 7.3.5) спой фоторезиста наносят на подложки в электрическом поле напряженностью 1—5 кВ/см. Для создания такого поля между подложкой 3 и специальным кольцевым электродом 2 подают постоянное напряжение 20 кВ. При впрыскивании фоторезиста форсункой 1 в пространство между электродом и подложкой капельки фоторезиста диаметром в несколько микрометров заряжаются, летят под действием электрического поля к под­ложке на ней.

Этот метод имеет высокую производительность и позволяет наносить слой фоторезиста на подложки большой площади. Недостаток его - трудность стабилизации процесса и сложность оборудования.

Методы окуна­ния и полива явля­ются простейшими среди всех методов нанесения слоя фоторезиста.

При окунании подложки погружают на несколько се­кунд в ванну с фоторезис­том, а затем с постоянной скоростью вытягивают из нее в вертикальном положе­нии специальными подъем­ными устройствами и сушат, установив вертикально или наклонно.

Полив фоторезиста на горизонтально расположен­ные подложки обеспечивает лучшую по сравнению с оку­нанием однородность слоя по толщине. Следует отме­тить, что при этом методе неизбежны утолщения слоя фоторезиста по краям.

Окунание и полив применяют для нанесения слоя фото­резиста на подложки больших размеров, а также его толстых слоев (до 20 мкм) на обе стороны подложек. Недостаток этих методов - неоднородность слоя фоторезиста по толщине.

^ Общим недостатком нанесения жидких фоторезистов является трудность получения сплошных слоев заданной толщины.

Накатка пленки сухого фоторезиста значительно упрощает процесс и обеспечивает получение равно­мерного покрытия на подложках большой площади. Пленочный фоторезист представляет собой трехслойную ленту, в которой слой фоторезиста заключен между двумя полимерными пленка­ми: одна (более прочная) является несущей, а другая — защитной.

Предварительно защитную пленку удаляют, а фоторезист вместе с несущей пленкой накатывают валиком на подложки, нагретые до 100 °С. Под действием температуры и давления фоторезист приклеивается к подложке. При этом его адгезия к подложке выше, чем к несущей пленке, которую затем сни­мают.



Рисунок 7.3.5. Нанесение фоторезиста в электростатическом поле:

1 - форсунка, 2 - кольцевой элек­трод, 3 — подложка, 4 — столик

Недостатки этого метода - большая толщина (10 — 20 мкм) и низкая разрешающая способность слоя сухого фоторезиста. Поэтому накатку пленки сухого фоторезиста используют толь­ко при больших размерах элементов ИМС.

Сушка слоя фоторезиста. Для окончательного удаления растворителя из слоя фоторезиста его просушивают. При этом уплотняется молекулярная структура слоя, уменьшаются внут­ренние напряжения и повышается адгезия к подложке. Непол­ное удаление растворителя из слоя фоторезиста снижает его кислотостойкость. Для удаления растворителя подложки нагре­вают до температуры, примерно равной 100 °С. Время сушки выбирают оптимальным для конкретных типов фоторезистов.

Температура и время сушки значительно влияют на такие важные параметры фоторезистов, как время их экспонирования и точность передачи размеров элементов после проявления. Большое значение при сушке имеет механизм подвода теплоты. Существует три метода сушки фоторезиста: конвекционный, инфракрасный и в СВЧ-поле.

При конвективной сушке подложки выдер­живают в термокамере при 90 — 100 °С в течение 15 — 30 мин. Недостаток этого метода — низкое качество фоторезистового слоя.

При инфракрасной сушке источником теп­лоты является сама полупроводниковая подложка, поглощаю­щая ИК-излучение от специальной лампы или спирали накали­вания. Окружающая среда (очищенный и осушенный инертный газ или воздух) при этом сохраняет благодаря непрерывной продувке примерно комнатную температуру. Так как "фронт сушки" перемещается от подложки к поверхности слоя фото­резиста, качество сушки по сравнению с конвективной сущест­венно выше, а время сокращается до 5 - 10 мин.

В электронной промышленности широко используются ус­тановки ИК-сушки УИС-1 и конвейерные печи с инфракрас­ными нагревателями. Система измерения и стабилизации тем­пературы в них основана на определении температуры эталон­ных подложек, закрепленных на рамке внутри рабочей камеры, для продувки которой служат вентиляторы. Источниками теп­лоты являются лампы ИК-излучения. Время и температура сушки поддерживаются автоматически.

При СВЧ-сушке подложки нагреваются, погло­щая электромагнитную энергию СВЧ-поля. Такая сушка про­изводится в печах мощностью 200 — 400 Вт при рабочей час­тоте 2,45 ГГц. Время сушки — несколько секунд. Достоинством этого метода является высокая производительность, а недос­татками — сложность оборудования и необходимость тщатель­ного экранирования рабочего объема во избежание облучения оператора, а также неравномерность сушки слоя фоторезиста на различных по электрическим характеристикам участках под­ложек. Поэтому сушке в СВЧ-поле подвергают только однород­ные подложки.

При любом методе сушки ее режимы (время, температура) дол­жны исключать появление структурных изменений в слое фоторезиста. Высушенный слой необходимо экспонировать не позднее чем через 10 ч. Сушку подложек следует выполнять в тщательно обеспыленной среде 10-го и 1-го классов чистоты. Контролируют качество сушки визуаль­но или под микроскопом.

^ Основные виды и причины брака. При нанесении слоя фото­резиста могут появиться различные виды брака.

Плохая адгезия фоторезиста к подложке вызывает при последующем травлении растравливание и искажение рисун­ков элементов. Причиной плохой адгезии является некачест­венная подготовка поверхности подложек.

Локальные неоднородности рельефа слоя фоторезиста, имеющие вид капелек, обусловлены попаданием пылинок на подложки или присутствием посторонних частиц в фоторе­зисте.

Микродефекты (проколы) слоя фоторезиста связаны с теми же причинам, что и локальные неоднородности рельефа.

Неоднородности рельефа слоя фоторезиста в виде радиаль-но расходящихся длинных лучей вызываются нарушением режи­ма центрифугирования в процессе нанесения слоя (вибрацией столика при вращении).

Неоднородность толщины слоя фоторезиста на подложках и разброс ее на разных подложках являются результатами перекоса столика, уменьшения частоты его вращения и увели­чения времени разгона центрифуги. Отклонение толщины слоя фоторезиста от заданной может быть также связано с изменением вязкости фоторезиста.

^ Точность полученного в процессе фотолитографии топологичес­кого рисунка в первую очередь определяется прецизионностью процес­са совмещения.

Передача изображения с фотошаблона на подложку должна выполняться с точностью до десятых долей минимального раз­мера элемента, что обычно составляет 0,1 — 0,5 мкм. Поэтому процессы совмещения и экспонирования проводят на одном рабочем месте одновременно на одной установке, не допуская даже малой вибрации фотошаблона и подложки.

Совмещение и экспонирование являются наиболее ответственными операциями процесса фотолитографии.

Перед экспонированием слоя фоторезиста фотошаблон следует правильно сориентировать относительно подложки у рисунка предыдущего слоя. Для полного формирования струю туры полупроводникового прибора или ИМС необходим комплект фотошаблонов со строго согласованными топологическими рисунками элементов.

При первой фотолитографии, когда поверхность подложек еще однородна, фотошаблон ориентируют относительно базового среза подложки. При последующих фотолитографиях, когда на подложках сформированы топологические слои, рису­нок фотошаблона ориентируют относительно рисунка предыду­щего слоя.

Совмещают рисунки фотошаблона и подложки в два эта па. На первом этапе с помощью реперных модулей — "пустых кристаллов" выполняют грубое совмещение в пределах всего поля подложки. На втором этапе с помощью микроскопа в пределах единичного модуля по специальным знакам - фигу­рам совмещения, предусмотренным в рисунке каждого тополо­гического слоя, выполняют точное совмещение. Форму фигур совмещения (кресты, круги, квадраты) выбирают в зависи­мости от типа используемого при фотолитографии фоторезис­та (Рисунок 7.3.6,а - в).



Рисунок 7.3.6. Фигуры совмещения на фотошаблонах (I) и подложках после второй (II) и четвертой (III) фотолитографии:

а - концентрические окружности, б — вложенные квадраты, в - биссекторные знаки

Сложность операции совмещения состоит в том, что прихо­дится с высокой точностью совмещать элементы малых разме­ров на большой площади. Для этого увеличение микроскопа должно быть не менее 200 раз. Современные установки обеспе­чивают точность совмещения 0,25 — 1 мкм. Точность совме­щения последовательных рисунков зависит от следующих факторов:

точности совмещения фотошаблонов в комплекте;

точности воспроизведения форм и размеров элементов рисунков в процессе фотолитографии;

качества подложек и слоев фоторезиста;

совершенства механизма совмещения установки;

разрешающей способности микроскопа;

соблюдения температурного режима.

Существует два метода совмещения фотошаблонов с под­ложками:

визуальный, при котором, выполняя совмещение, наблю­дают за контрольными отметками в микроскоп; при этом точность совмещения составляет 0,25 — 1 мкм и зависит от возможностей установки;

автоматизированный фотоэлектрический с помощью фото­электронного микроскопа, обеспечивающий точность совме­щения 0,1 — 0,3 мкм.

При контактной фотолитографии операцию совмещения выполняют с помощью специального механизма совмещения микроизображений (Рисунок 7.3.7), основными элементами которого являются предметный шаровой столик 1 со сферическим осно­ванием - гнездом 2, рамка 16 для закрепления фотошаблона 15 и устройство перемещения рамки и поворота предметного столика.

Предварительно подложку размещают на предметном сто­лике так, чтобы слой фоторезиста был сверху, и закрепляют фотошаблон в подвижной рамке над поверхностью подложки 14. Между подложкой и фотошаблоном должен быть зазор для свободного перемещения рамки. Для совмещения рисунков на фотошаблоне и подложке передвигают рамку с фотошаблоном в двух взаимно перпендикулярных направлениях в плоскости подложки и поворачивают предметный столик с подложкой вокруг вертикальной оси.

Современные установки совмещения и экспонирования представляют собой сложные оптико-механические комплексы. Точность совмещения и производительность зависят от выбран­ного метода совмещения - визуального или фотоэлектричес­кого.

В отечественных установках контактного совмещения и экспонирования (ЭМ-576, ЭМ-5006) используется принцип контактной печати с наложением фотошаблона на подложку. При идеальной плоскостности фотошаблона и подложки пере­дача изображения осуществляется с минимальными искажени­ями при большой производительности.

После выполнения совмещения (Рисунок 7.3.8, а) подложку прижимают к фотошаблону и экспонируют слой фоторезиста (Рисунок 7.3.8, б). Основной целью экспонирования является высо­коточное воспроизведение слоем фоторезиста всех элементов топологии полупроводниковых приборов или ИМС. Правиль­ность экспонирования влияет на качество переноса изображе­ния с фотошаблона на слой фоторезиста.





Рисунок 7.3.7. Механизм совмещения микро­изображений фото­шаблона и подлож­ки при контактной фотолитографии:

1,2 предметный столик и его гнездо, 3 - направляю­щие, 4 — микроза­зор, 5 — штифт, 6 — регулировочный винт, 7, 10 - ди­афрагмы, 8, 11 -камеры, 9 - фикса­тор, 12, 13 -трубо­проводы, 14 — под­ложка, 15 — фото­шаблон, 16 — рамка

1   2   3   4   5   6   7   8   9   10   11

Ваша оценка этого документа будет первой.
Ваша оценка:

Похожие:

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Учебно-методический комплекс для студентов дневной и заочной формы обучения по специальности 260504

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Учебно-методический комплекс Рабочая учебная программа Методические указания и индивидуальные задания
О. М. Чикова. Психология акцентуированных личностей: Учебно-методический комплекс. Рабочая учебная...
Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Учебно-методический комплекс по дисциплине «Анатомия центральной нервной системы» для студентов очной

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Учебно-методический комплекс по дисциплине цикла ен. В. 01а для студентов очной и заочной формы обучения

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Учебно-методический комплекс «Анатомия и физиология центральной нервной системы» для студентов дневного

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Учебно-методический комплекс дисциплины «логопедические технологии» (раздел «технология обследования

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Методический комплекс для студентов специальности 270900- технология мяса и мясных продуктов по направлению

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Научно-образовательный комплекс По специальности 050701 «Биотехнология» учебно-методический комплекс

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Учебно-методический комплекс Для студентов специальности 060105

Учебно-методический комплекс по дисциплине “технология изделий электронно-оптической техники” для студентов специальности т 08. 03. 00 «Электронно-оптические системы и технологии» icon Учебно-методический комплекс Для студентов специальности 060101

Разместите кнопку на своём сайте:
Медицина


База данных защищена авторским правом ©MedZnate 2000-2016
allo, dekanat, ansya, kenam
обратиться к администрации | правообладателям | пользователям
Документы